28. Symmetric Matrices

Definition 28.1. A matrix A is symmetric if $A^{T}=A$.
Note that symmetric matrices are necessarily square.

Example 28.2.

$$
\left(\begin{array}{cc}
1 & -2 \\
-2 & 3
\end{array}\right)
$$

is symmetric but

$$
\left(\begin{array}{cc}
1 & -2 \\
5 & 3
\end{array}\right)
$$

is not. The transpose is

$$
\left(\begin{array}{cc}
1 & 5 \\
-2 & 3
\end{array}\right)
$$

Let's try to diagonalise a symmetric matrix:

$$
A=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
$$

We look for the eigenvalues. If

$$
A \vec{v}=\lambda \vec{v}
$$

then \vec{v} is an eigenvector and λ is an eigenvalue. We rewrite this equation as

$$
A \vec{v}=\lambda I_{2} \vec{v} \quad \text { so that } \quad\left(A-\lambda I_{2}\right) \vec{v}=0 .
$$

Thus the null space of

$$
A-\lambda I_{2}=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)-\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right)=\left(\begin{array}{cc}
3-\lambda & 1 \\
1 & 3-\lambda
\end{array}\right)
$$

contains more than the zero vector. It follows that

$$
\operatorname{det}\left(A-\lambda I_{2}\right)=0
$$

so that

$$
\left|\begin{array}{cc}
3-\lambda & 1 \\
1 & 3-\lambda
\end{array}\right|=0
$$

Thus

$$
0=(3-\lambda)^{2}-1=\lambda^{2}-6 \lambda+8=(\lambda-2)(\lambda-4)
$$

The roots of the characteristic polynomial are $\lambda=2$ and $\lambda=4$. If $\lambda=2$ then the eigenspace of A is the nullspace of

$$
A-2 I_{2}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

If we apply Gaussian elimination we get

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
$$

x is a basic variable and y is a free variable,

$$
x+y=0 \quad \text { so that } \quad x=-y .
$$

$\vec{v}_{1}=(1,-1)$ is an eigenvector with eigenvalue 2.
If $\lambda=4$ then the eigenspace of A is the nullspace of

$$
A-2 I_{2}=\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)
$$

If we apply Gaussian elimination we get

$$
\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & -1 \\
1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right)
$$

x is a basic variable and y is a free variable,

$$
x-y=0 \quad \text { so that } \quad x=y
$$

$\vec{v}_{2}=(1,1)$ is an eigenvector with eigenvalue 4.
Note that \vec{v}_{1} and \vec{v}_{2} are orthogonal. Let

$$
\vec{u}_{1}=\frac{1}{\sqrt{2}}(1,-1) \quad \text { and } \quad \vec{u}_{2}=\frac{1}{\sqrt{2}}(1,1)
$$

Then \vec{u}_{1} and \vec{u}_{2} are orthonormal. We have

$$
A=P D P^{-1}
$$

where P is the matrix whose columns are \vec{u}_{1} and \vec{u}_{2},

$$
P=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) .
$$

Note that P is an orthogonal matrix, that is, the columns of P are orthonormal. So the inverse of P is the transpose of P. Therefore

$$
A=P D P_{2}^{-1}=P D P^{T}
$$

We check:

$$
\begin{aligned}
P D P^{T} & =\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
2 & 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
3 & 1 \\
1 & 3
\end{array}\right),
\end{aligned}
$$

as expected.
Before we proceed, let's record the key property of symmetric matrices:

Lemma 28.3. Let A be a symmetric matrix.
If \vec{v} and \vec{w} are eigenvectors with distinct eigenvalues λ and μ then \vec{v} and \vec{w} are orthogonal.

Proof. Consider $(A \vec{v}) \cdot \vec{w}$. Note that

$$
(A \vec{v}) \cdot \vec{w}=(A \vec{v})^{T} \vec{w}=\vec{v}^{T} A^{T} \vec{w}=\vec{v}^{T} A \vec{w}=\vec{v} \cdot A \vec{w} .
$$

But

$$
A \vec{v} \cdot \vec{w}=\lambda \vec{v} \cdot \vec{w} \quad \text { and } \quad \vec{v} \cdot A \vec{w}=\vec{v} \cdot \mu \vec{w}=\mu \vec{v} \cdot \vec{w} .
$$

So

$$
\lambda \vec{v} \cdot \vec{w}=\mu(\vec{v} \cdot \vec{w}) .
$$

As $\lambda \neq \mu$ we must $\vec{v} \cdot \vec{w}=0$. But then \vec{v} and \vec{w} are orthogonal.
Theorem 28.4. Let A be a symmetric matrix.
Then we can find a diagonal matrix A and an orthogonal matrix P such that

$$
A=P D P^{T}
$$

In particular every symmetric matrix is diagonalisable.
Example 28.5. Is

$$
A=\left(\begin{array}{lll}
1 & 1 & 3 \\
1 & 3 & 1 \\
3 & 1 & 1
\end{array}\right)
$$

diagonalisable?

Yes, since it is symmetric. Let's diagonalise it. The characteristic polynomial is

$$
\begin{aligned}
\left|\begin{array}{ccc}
1-\lambda & 1 & 3 \\
1 & 3-\lambda & 1 \\
3 & 1 & 1-\lambda
\end{array}\right| & =(1-\lambda)\left|\begin{array}{cc}
3-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|-\left|\begin{array}{cc}
1 & 1 \\
3 & 1-\lambda
\end{array}\right|+3\left|\begin{array}{cc}
1 & 3-\lambda \\
3 & 1
\end{array}\right| \\
& =(1-\lambda)(3-\lambda)(1-\lambda)-(1-\lambda)-(1-\lambda)+3+3-9(3-\lambda) \\
& =-\lambda^{3}+5 \lambda^{2}+4 \lambda-20 \\
& =-(\lambda-2)(\lambda+2)(\lambda-5)
\end{aligned}
$$

So the eigenvalues are $2,-2$ and 5 . We calculate the corresponding eigenvectors.

If $\lambda=2$ we want the nullspace of $A-2 I_{2}$:

$$
\left(\begin{array}{ccc}
-1 & 1 & 3 \\
1 & 1 & 1 \\
3 & 1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & 3 \\
3 & 1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & 4 \\
0 & -2 & -4
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

The elimination is complete. x and y are basic variables, z is a free variable. Let's put $z=1$:

$$
y+2=0 \quad \text { so that } \quad y=-2
$$

But then

$$
x-2+1=0 \quad \text { so that } \quad x=1 .
$$

Thus $\vec{v}_{1}=(1,-2,1)$ is an eigenvector with eigenvalue $\lambda_{1}=2$.
If $\lambda=-2$ we want the nullspace of $A+2 I_{2}$:

$$
\left(\begin{array}{lll}
3 & 1 & 3 \\
1 & 5 & 1 \\
3 & 1 & 3
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 5 & 1 \\
3 & 1 & 3 \\
3 & 1 & 3
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 5 & 1 \\
0 & -14 & 0 \\
0 & -14 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 5 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The elimination is complete. x and y are basic variables, z is a free variable. Let's put $z=1$:

$$
y=0
$$

But then

$$
x+1=0 \quad \text { so that } \quad x=-1 .
$$

Thus $\vec{v}_{2}=(-1,0,1)$ is an eigenvector with eigenvalue $\lambda_{2}=-2$.
If $\lambda=5$ we want the nullspace of $A-5 I_{2}$:

$$
\left(\begin{array}{ccc}
-4 & 1 & 3 \\
1 & -2 & 1 \\
3 & 1 & -4
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & -2 & 1 \\
-4 & 1 & 3 \\
3 & 1 & -4
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & -7 & 7 \\
0 & 7 & -7
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

The elimination is complete. x and y are basic variables, z is a free variable. Let's put $z=1$:

$$
y-1=0 \quad \text { so that } \quad y=1
$$

But then

$$
x-2+1=0 \quad \text { so that } \quad x=1 .
$$

Thus $\vec{v}_{1}=(1,1,1)$ is an eigenvector with eigenvalue $\lambda_{1}=5$.
Therefore

$$
A=P D P^{T}
$$

where

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 5
\end{array}\right) \quad \text { and } \quad P=\frac{1}{\sqrt{6}}\left(\begin{array}{ccc}
1 & -\sqrt{3} & \sqrt{2} \\
-2 & 0 & \sqrt{2} \\
1 & \sqrt{3} & \sqrt{2}
\end{array}\right)
$$

