29. Final Review I

Example 29.1. Find a basis of
$W=\left\{(a+2 b+4 c+8 d, 2 a+4 b+6 c+8 d, 3 a+6 b+9 c+12 d) \mid(a, b, c, d) \in \mathbb{R}^{4}\right\}$.
Implicit in this question is the assumption that W is a linear subspace of \mathbb{R}^{3}. Given a matrix A there are three linear spaces one can attach to A, the column space, the row space and the null space.

There are many ways to see how to attach a matrix to W. One way is to realise that W is the image of the linear map

$$
f: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{3}
$$

given by
$(a, b, c, d) \longrightarrow(a+2 b+4 c+8 d, 2 a+4 b+6 c+8 d, 3 a+6 b+9 c+12 d)$.
There is a matrix A associate to f. It is the matrix A such that $f(\vec{x})=A \vec{x} . A$ is a 3×4 matrix. The columns of A correspond to the images of the four standard basis vectors.
$\vec{e}_{1}=(1,0,0,0), \quad \vec{e}_{2}=(0,1,0,0), \quad \vec{e}_{3}=(0,0,1,0) \quad$ and $\quad \vec{e}_{4}=(0,0,0,1)$.
The images are
$f(1,0,0,0)=(1,2,3), \quad f(0,1,0,0)=(2,4,6), \quad f\left(\vec{e}_{3}\right)=(4,6,9) \quad$ and $\quad f\left(\vec{e}_{4}\right)=(8,8,12)$.
Therefore

$$
A=\left(\begin{array}{cccc}
1 & 2 & 4 & 8 \\
2 & 4 & 6 & 8 \\
3 & 6 & 9 & 12
\end{array}\right) .
$$

Note that the row space and the null space of A are linear subspaces of \mathbb{R}^{4}. The column space of A is a linear subspace of \mathbb{R}^{3}. In fact the column space is indeed the image of the linear map f.

Here is another way to see all of this:

$$
\begin{aligned}
\left(\begin{array}{c}
a+2 b+4 c+8 d \\
2 a+4 b+6 c+8 d \\
3 a+6 b+9 c+12 d
\end{array}\right) & =\left(\begin{array}{c}
a \\
2 a \\
3 a
\end{array}\right)+\left(\begin{array}{c}
2 b \\
4 b \\
6 b
\end{array}\right)+\left(\begin{array}{l}
4 c \\
6 c \\
9 c
\end{array}\right)+\left(\begin{array}{c}
8 d \\
8 d \\
12 d
\end{array}\right) \\
& =a\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+b\left(\begin{array}{l}
2 \\
4 \\
6
\end{array}\right)+c\left(\begin{array}{l}
4 \\
6 \\
9
\end{array}\right)+d\left(\begin{array}{c}
8 \\
8 \\
12
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 2 & 4 & 8 \\
2 & 4 & 6 & 8 \\
3 & 6 & 9 & 12
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right) .
\end{aligned}
$$

Visibily then W is the column space of A. Therefore W is a linear subspace and it does make sense to look for a basis of W.

We apply Gaussian elimination:

$$
\left(\begin{array}{cccc}
1 & 2 & 4 & 8 \\
2 & 4 & 6 & 8 \\
3 & 6 & 9 & 12
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 2 & 4 & 8 \\
0 & 0 & -2 & -8 \\
0 & 0 & -3 & -12
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 2 & 4 & 8 \\
0 & 0 & 1 & 4 \\
0 & 0 & -3 & -12
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 2 & 4 & 8 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

There are pivots in the first and third rows. Gaussian elimination does not preserve the column space but it does preserve the relations. The first and third columns are a basis at the end of the elimination so the first and third columns of A are a basis of the column space.

The column space is the span of the vectors $(1,2,3)$ and $(4,6,9)$.
Note that $(1,2,4,8)$ and $(0,0,1,4)$ is basis for the row space. Gaussian elimination preserves the row space.

Example 29.2. Given that $(a, b, c, d)=(1,1,1,1)$ is a solution to the linear equations

$$
\begin{aligned}
a+2 b+4 c+8 d & =15 \\
2 a+4 b+6 c+8 d & =20 \\
3 a+6 b+9 c+12 d & =33
\end{aligned}
$$

what is the general solution?
The general solution of the linear equations $A \vec{x}=\vec{b}$ is the sum of a particular solution plus the general solution of the homogeneous equation $A \vec{x}=\overrightarrow{0}$.

We know that A is row equivalent to

$$
\left(\begin{array}{llll}
1 & 2 & 4 & 8 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We can find the general solution to the homogeneous by back substitution. a and c are basic variables, b and d are free variables. Hence

$$
c+4 d=0 \quad \text { so that } \quad c=-4 d
$$

and

$$
a+2 b-16 d+8 d=0 \quad \text { so that } \quad a=-2 b+8 d
$$

The general solution of the homogeneous is

$$
(a, b, c, d)=(-2 b+8 d, b,-4 d, d)=b(-2,1,0,0)+d(8,0,-4,1)
$$

The null space has a basis $(-2,1,0)$ and $(8,-4,1)$.
The general solution to the linear equations in (29.2) is

$$
(a, b, c, d)=(1,1,1,1)+b(-2,1,0)+d(8,-4,1)
$$

Example 29.3. If A is a 3×3 matrix and $\operatorname{det} A=3$ what is $\operatorname{det} 2 A$?
The answer is

$$
2^{3} \cdot 3=24
$$

There are two ways to see this. The first is algebraic. If you multiply a row by 2 then the determinant gets multiplied by 2 . A 3×3 matrix has three rows, so that each row is multiplied by 2 . Thus the determinant gets multiplied by $2^{3}=8$.

The second is geometric. The absolute value of the determinant of A is the volume of a parallelepiped with sides given by the rows of A. If we multiply A by 2 then each side is doubled. Thus the volume goes up by a factor of 8 .

