
4. Geometry of the span; homogeneous linear equations

It is interesting to think about the geometric meaning of linear com-
binations and the span. If you want to add two vectors ~u and ~v, move
the starting point of ~v to the endpoint of ~u; the sum is the arrow you
get by first going along ~u and then along ~v.

~u

~v

Figure 1. Addition of vectors: parallelogram rule

If λ is a scalar and ~v is a vector then λ~v is the vector which is λ
times as long as ~v. If λ > 0 then λ~v has the same direction as ~v and if
λ < 0 then λ~v has the opposite direction. Either way, we will say that
λ~v is parallel to ~v.

The span of a collection of vectors ~v1, ~v2, . . . , ~vn is just the set of all
linear combinations of ~v1, ~v2, . . . , ~vn.

If we have one vector ~v the span consists of all multiples λ~v. The
span of one non-zero vector ~v is just the set of vectors parallel to this
vector (the span of the zero vector is just the origin). This is the same
thing as a line through the origin.

For example the span of the vector (1, 0, 0) consists of all vectors
(λ, 0, 0), the span is the x-axis, the span of the vector (0, 1, 0) is the
y-axis and the span of the vector (0, 0, 1) is the z-axis. The span of the
vector (1, 1, 1) is the set of all vectors (λ, λ, λ); it is the line through
the origin going through the point (1, 1, 1).

If ~v and ~w are two vectors then the span of these vectors consists of
all linear combinations

λ~v + µ~w.

Now λ~v is parallel to ~v and µ~w is parallel to ~w. If ~v and ~w are non-zero
then we get two lines through the origin. The sum gives a vector in
the plane containing these two lines. The span of two vectors is nearly
always a plane.

For example the span of the vectors (1, 0, 0) and (0, 1, 0) consists of all
vectors (λ, µ, 0)–it is the xy-plane (the floor), the plane z = 0; the span
of the vectors (1, 0, 0) and (0, 0, 1) consists of all vectors (λ, 0, µ)–it is
the xz-plane (a vertical coordinate plane), the plane y = 0; the span of
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the vectors (0, 1, 0) and (0, 0, 1) consists of all vectors (0, λ, µ)–it is the
yz-plane (the other vertical coordinate plane), the plane x = 0. The
vectors (1,−1, 0) and (1, 0,−1) span a plane–it is the plane x+y+z = 0.

What is the span of the vectors (1, 0, 0) and (2, 0, 0)? Both vectors
span the same line, the x-axis and so their span is the x-axis. The
problem is that the two vectors are parallel. In general two vectors
span a plane, unless the two vectors are parallel, when you just get a
line.

If we have three equations in three unknowns, how many different
configurations of planes do we get? One possibility is the three planes
meet at a single point; something like the three planes x = 0, y = 0
and z = 0. But what if two of the planes are parallel? One plane could
be z = 0 and the other could be z = 1. Perhaps the third plane is
x = 0. The plane meets the other two planes in two parallel line.

To count, we have to be more systematic. Let’s group the configura-
tions by the solution set. We could get no solutions, a point, a line and
a plane. There is only way to get a plane, the three planes we started
with are the same, x = 0, x = 0 and x = 0. There is also only one way
to get a point. How do we get a line? All three planes must contain
the line. One possibility is to have three different planes containing the
line. The planes x = 0, y = 0 and x + y = 0 all contain the z-axis.
But we could have the same plane twice, plus another plane, x = 0,
x = 0 and y = 0 (the intersection is the z-axis). Finally how do we
get no solutions? One possibility is two have two parallel planes and a
third plane. We could also have three parallel planes, z = 0, z = 1 and
z = 2. One of the parallel planes could be repeated z = 0, z = 0 and
z = 1. There is one final possibility. We could have three planes which
intersect in three parallel lines (the “toblerone solution”). The planes
x = y, y = 0 and x + y = 2 (so that planes of the form z = a give the
same cross-section; three lines which give triangle).

Adding the four possibilities together, no solutions, a point, a line
and a plane there are

4 + 1 + 2 + 1 = 8

different configurations.
A matrix equation of the form

A~x = ~0

is called homogeneous. Here ~0 is the column vector with m rows, all
zero. The zero vector ~x = ~0 (now with n rows) is always a solution to
a homogeneous equation,

A~0 = ~0.
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Thus a homogeneous equation is always consistent. The solution ~x =
~0 is sometimes called the trivial solution. There are infinitely many
solutions if and only if there are free variables.

Example 4.1. Does the system

x+ 2y + 3z = 0

2x+ 3y + 4z = 0

4x+ 7y + 10z = 0,

have a non-trivial solution?

We just have to see if there are any free variables. We write down
the augmented matrix 1 2 3 0

2 3 4 0
4 7 10 0

 .

Now we apply Gaussian elimination:1 2 3 0
2 3 4 0
4 7 10 0

→
1 2 3 0

0 −1 −2 0
0 −1 −2 0

→
1 2 3 0

0 1 2 0
0 −1 −2 0

→
1 2 3 0

0 1 2 0
0 0 0 0


z is a free variable. There are infinitely many solutions. In particular
there are non-trivial solutions.

If we solve by back substitution we get

y + 2z = 0 so that y = −2z,

and
x− 4z + 3z = 0 so that x = z

The general solution is

(x, y, z) = (z,−2z, z) = z(1,−2, 1),

a line through the origin, the span of the vector (1,−2, 1).

Now suppose that we keep the same coefficient matrix but change ~b.
Let’s solve

x+ 2y + 3z = 6

2x+ 3y + 4z = 9

4x+ 7y + 10z = 21.

We write down the augmented matrix1 2 3 6
2 3 4 9
4 7 10 21


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Now we apply Gaussian elimination:1 2 3 6
2 3 4 9
4 7 10 21

→
1 2 3 6

0 −1 −2 −3
0 −1 −2 −3

→
1 2 3 0

0 1 2 3
0 −1 −2 −3

→
1 2 3 6

0 1 2 3
0 0 0 0


The system is consistent. z is a free variable.
If we solve by back substitution we get

y + 2z = 3 so that y = 3− 2z,

and

x+ 6− 4z + 3z = 6 so that x = z.

The general solution is

(x, y, z) = (z, 3− 2z, z) = (0, 3, 0) + z(1,−2, 1),

which represents a line. Notice that this line is a translate of the line
z(1,−2, 1). The two lines

(0, 3, 0) + z(1,−2, 1) and z(1,−2, 1)

are parallel.
This is a general phenomena. The solutions to the matrix equation

A~x = ~b

are of the form

~x = ~xh + ~xp.

Here ~xp is a fixed vector, one solution to the original equation

A~x = ~b.

~xh is then any solution to the homogeneous equation

A~x = ~0.

In the example above,

~xp = (0,−3, 0)

is a particular solution and

~xh = z(1, 2, 1),

is the general solution to the homogeneous equation.
Consider the plane

x+ y + z = 1.

Let’s find the general solution. We apply Gaussian elimination(
1 1 1 1

)
.
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The elimination is complete. We solve by back substitution. y and z
are free variables.

x+ y + z = 1 so that x = 1− y − z.
The general solution is

(x, y, z) = (1− y − z, y, z)
= (−y, y, 0) + (−z, 0, z) + (1, 0, 0)

= y(1,−1, 0) + z(1, 0,−1) + (1, 0, 0).

Here
~xp = (1, 0, 0),

is a particular solution.

~xh = y(1,−1, 0) + z(1, 0,−1),

is a plane through the origin, the general solution to the homogeneous
equation

x+ y + z = 0.
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