7. Matrix multiplication

Let A be an $m \times n$ matrix, so that A has m rows and n columns. It is convenient to be able to refer to the entries of A. The notation

$$
A=\left(a_{i j}\right)
$$

means that the (i, j)-entry, that is, the entry in the i th row and j th column, is $a_{i j}$.

If A and B are both $m \times n$ matrices, so that they have the same shape, we can add them. If $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ and

$$
C=\left(c_{i j}\right)=A+B
$$

is the sum then C is an $m \times n$ matrix then $c_{i j}=a_{i j}+b_{i j}$. A simple example will hopefully make this clear:

Example 7.1. Let

$$
A=\left(\begin{array}{ccc}
-1 & 2 & -3 \\
-3 & 0 & 5
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
2 & 1 & 3 \\
-3 & 7 & 4
\end{array}\right)
$$

Then

$$
C=A+B=\left(\begin{array}{ccc}
-1+2 & 2+1 & -3+3 \\
-3+-3 & 0+7 & 5+4
\end{array}\right)=\left(\begin{array}{ccc}
1 & 3 & 0 \\
-6 & 7 & 9
\end{array}\right) .
$$

Note that

$$
A+B=B+A
$$

since

$$
a_{i j}+b_{i j}=b_{i j}+a_{i j} .
$$

Note that the zero matrix O of shape $m \times n$ acts as the additive zero,

$$
A+O=O+A=A
$$

We can also multiply a matrix A by a scalar λ. If $C=\lambda A$ then C has the same shape as A and $c_{i j}=\lambda a_{i j}$.

Example 7.2. Let

$$
\begin{aligned}
A & =\left(\begin{array}{ccc}
-1 & 2 & -3 \\
-3 & 0 & 5
\end{array}\right) \quad \text { and } \quad \lambda=3 . \\
C=3 A & =\left(\begin{array}{llc}
3 \cdot-1 & 3 \cdot 2 & 3 \cdot-3 \\
3 \cdot-3 & 3 \cdot 0 & 3 \cdot 5
\end{array}\right)=\left(\begin{array}{ccc}
-3 & 6 & -9 \\
-9 & 0 & 15
\end{array}\right) .
\end{aligned}
$$

Note that scalar multiplication distributes over matrix addition:

$$
\lambda(A+B)=\lambda A+\lambda B
$$

How should we multiply matrices? Well matrices correspond to functions. Now we can multiply functions together but if you multiply to
linear functions together, you almost never get a linear function. Take the identity function

$$
g: \mathbb{R} \longrightarrow \mathbb{R} \quad \text { given by } \quad x \longrightarrow x
$$

If you naively multiply g with itself you get

$$
\mathbb{R} \longrightarrow \mathbb{R} \quad \text { given by } \quad x \longrightarrow x^{2}
$$

which is not linear.
One can also compose functions. Consider the linear function rotation through $\pi / 2$. If you compose this with itself you get rotation through π, another linear function. Or if you compose with the linear function reflection in the x-axis you get the linear function reflection in the line $y=-x$.

In general if we are given

$$
g: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \quad \text { and } \quad f: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{p}
$$

then you can compose g with f to get

$$
f \circ g: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{p} \quad \text { given by } \quad \vec{x} \longrightarrow f(g(\vec{x})) .
$$

This suggests that given an $m \times n$ matrix B, corresponding to g and an $p \times m$ matrix A corresponding to f the matrix product $C=A B$ should be a $p \times n$ matrix.

We define the matrix product the same way we define multiplying a vector by a matrix. We pair rows of A with columns of B. The (i, j) entry $c_{i j}$ of the product $C=A B$ is the sum of the products of the i th row of A with the j th column of B,

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} n j=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

Let's do some examples. Suppose that

$$
A=\left(\begin{array}{ccc}
-1 & 2 & -3 \\
-3 & 0 & 5
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
2 & -3 \\
1 & 7 \\
3 & 4
\end{array}\right)
$$

A is a 2×3 matrix, B is a 3×2 matrix and the product is a 2×2 matrix

$$
\begin{aligned}
\left(\begin{array}{ccc}
-1 & 2 & -3 \\
-3 & 0 & 5
\end{array}\right)\left(\begin{array}{cc}
2 & -3 \\
1 & 7 \\
3 & 4
\end{array}\right) & =\left(\begin{array}{cc}
-1 \cdot 2+2 \cdot 1+(-3) \cdot 3 & -1 \cdot-3+2 \cdot 7+(-3) \cdot 4 \\
-3 \cdot 2+0 \cdot 1+5 \cdot 3 & -3 \cdot-3+0 \cdot 7+5 \cdot 4
\end{array}\right) \\
& =\left(\begin{array}{cc}
-9 & 5 \\
9 & 29
\end{array}\right) .
\end{aligned}
$$

Recall that

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

represents rotation through $\pi / 2$. Let's compute A^{2},

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

This represents rotation through π, as expected. Recall that

$$
B=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

represents reflection in the x-axis. Let's compute $B A$,

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

What function does this represent?

$$
\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)\binom{x}{y}=\binom{-y}{-x} .
$$

This sends $(1,0)$ to $(0,-1)$ and $(0,1)$ to $(-1,0)$, reflection in the line $y=-x$.

Is matrix multiplication commutative, that is, given two matrices A and B does the order of multiplication matter, does

$$
A B=B A ?
$$

Suppose that

$$
A=\left(\begin{array}{ll}
-1 & 2 \\
-3 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
2 & 1 & 3 \\
-3 & 7 & 4
\end{array}\right)
$$

Then A is a 2×2 matrix and B is a 2×3. Then we can multiply A by B to get a 2×3 matrix $A B$:

$$
\left(\begin{array}{ll}
-1 & 2 \\
-3 & 0
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & 3 \\
-3 & 7 & 4
\end{array}\right)=\left(\begin{array}{ccc}
-8 & 13 & 5 \\
-6 & -3 & -9
\end{array}\right)
$$

However the product $B A$ does not even make sense. B is a 2×3 and A is 2×2 matrix. It is even clearer if you think in terms of functions. A corresponds to a linear function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ and B corresponds to a linear function $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$. It makes sense to compose g with f, $f \circ g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$. It does not make sense to compose f with g.

Now consider the matrices

$$
A=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right) .
$$

A is a 1×3 matrix and B is a 3×1 matrix. The product is a 1×1 matrix:

$$
\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)=(13)
$$

The product $B A$ in the other order makes sense but it is a 3×3 matrix:

$$
\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
2 & 4 & 6 \\
1 & 2 & 3 \\
3 & 6 & 9
\end{array}\right)
$$

So $A B \neq B A$, even though both sides make sense. In terms of functions, the composition of $g: \mathbb{R} \longrightarrow \mathbb{R}^{3}$ and $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ is a function $f \circ g: \mathbb{R} \longrightarrow \mathbb{R}$ and the composition the other way is a function $g \circ f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$.

Finally suppose A and B are both square matrices, let's say 2×2 :

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Then both $A B$ and $B A$ are 2×2 matrices. We have

$$
A B=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and

$$
B A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

So $A B \neq B A$ even though both sides have the same shape. In terms of functions the product $A B$ represents the composition of reflection in the x-axis and then rotation through $\pi / 2$ and the second represents rotation through $\pi / 2$ and then reflection in the x-axis. The first is reflection in the line $y=x$ and the second is reflection in the line $y=-x$. So matrix multiplication is not commutative.

Given a matrix A the transpose of A, denoted A^{t}, is obtained from A by switching the rows and columns. If $A=\left(a_{i j}\right)$ has shape $m \times n$ then $A^{t}=B=\left(b_{i j}\right)$ has shape $n \times m$. We have $b_{i j}=a_{j i}$.

If

$$
A=\left(\begin{array}{ccc}
-1 & 2 & -3 \\
-3 & 0 & 5
\end{array}\right)
$$

then A is a 2×3 matrix then the transpose

$$
B=\left(\begin{array}{cc}
-1 & -3 \\
2 & 0 \\
-3 & 5
\end{array}\right)
$$

is a 3×2 matrix.

