FIRST MIDTERM MATH 20F, UCSD, AUTUMN 14

You have 50 minutes. This test is closed book, closed notes, no calculators.
There are 7 problems, and the total number of points is 100 . Show all your work. Please make your work as clear and easy to follow as possible.
$\overline{\text { _________ }}$
Name: \qquad
Signature: \qquad
Student ID \#: \qquad
Dissertation instructor: \qquad
Dissertation Number+Time: \qquad

Problem	Points	Score
1	20	
2	20	
3	10	
4	10	
5	15	
6	15	
7	10	
Total	100	

1. (20pts) (i) Show that the matrix

$$
\left(\begin{array}{cccc}
1 & -1 & 2 & 3 \\
2 & -2 & 5 & 1 \\
-1 & 1 & -5 & 12
\end{array}\right) \quad \text { has echelon form } \quad\left(\begin{array}{cccc}
1 & -1 & 2 & 3 \\
0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

To get full credit for this problem, you must show your steps and explain what row operations you are using at each stage.

Solution:

We apply Gaussian elimination. We multiply the first row by -2 and 1 and add it to the second and third rows:

$$
\left(\begin{array}{cccc}
1 & -1 & 2 & 3 \\
2 & -2 & 5 & 1 \\
-1 & 1 & -5 & 12
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & -1 & 2 & 3 \\
0 & 0 & 1 & -5 \\
0 & 0 & -3 & 15
\end{array}\right)
$$

Now multiply the second row by 3 and add it to the third row:

$$
\left(\begin{array}{cccc}
1 & -1 & 2 & 3 \\
0 & 0 & 1 & -5 \\
0 & 0 & -3 & 15
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & -1 & 2 & 3 \\
0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(ii) Identify the basic variables and the free variables of the linear system of question.

Solution:

The pivots are in the first and third columns. So x and z are the basic variables and the remaining variables y and w are the free variables.
2. (20pts)
(i) Find the general solution to the linear equations in parametric form:

$$
\begin{aligned}
x-y+2 z+3 w & =0 \\
2 x-2 y+5 z+w & =0 \\
-x+y-5 z+12 w & =0
\end{aligned}
$$

Solution: The coefficient matrix is the matrix A in question (1). We solve the equations from the echelon form using back substitution. By (1) (ii) y and w are the free variables.

$$
z-5 w=0 \quad \text { so that } \quad z=5 w
$$

Therefore

$$
x-y+2(5 w)+3 w=0 \quad \text { so that } \quad x=y-13 w .
$$

The general form is

$$
(x, y, z, w)=(y-13 w, y, 5 w, w)=y(1,1,0,0)+w(-13,0,5,1)
$$

(ii) Check that $(x, y, z, w)=(1,1,-1,1)$ is a solution to

$$
\begin{aligned}
x-y+2 z+3 w & =1 \\
2 x-2 y+5 z+w & =-4 \\
-x+y-5 z+12 w & =17 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
1-1-2+3 & =1 \\
2-2-5+1 & =-4 \\
-1+1+5+12 & =17 .
\end{aligned}
$$

(iii) Find the general solution to the linear equations, given in part (ii), in parametric form.

Solution:

The general solution is a sum of the particular solution $(1,1,-1,1)$ and the general solution to the homogeneous:

$$
(x, y, z, w)=(1,1,-1,1)+y(1,1,0,0)+w(-13,0,5,1)
$$

3. (10pts) (i) Show that the vectors $(1,0,0),(10,2,0)$ and $(-15,3,1)$ span \mathbb{R}^{3}.

Solution:

Let A be the matrix whose columns are the vectors $(1,0,0),(10,2,0)$ and $(-15,3,1)$. We want to show that we can always solve the equation $A \vec{x}=\vec{b}$. We apply elimination to

$$
A=\left(\begin{array}{ccc}
1 & 10 & -15 \\
0 & 2 & 3 \\
0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 10 & -15 \\
0 & 1 & 3 / 2 \\
0 & 0 & 1
\end{array}\right)
$$

Every row contains a pivot. It follows that the augmented matrix contains no pivots in the last column and the equation $A \vec{x}=\vec{b}$ is consistent. Therefore the vectors $(1,0,0),(10,2,0)$ and $(-15,3,1)$ span \mathbb{R}^{3}.
4. (10pts) Find the values of h for which the vectors $(-1,3,2),(2,-6,-5)$ and $(1, h, 1)$ in \mathbb{R}^{3} are linearly dependent.

Solution: Let A be the matrix whose columns are the vectors $(-1,3,2)$, $(2,-6,-5)$ and $(1, h, 1)$. We want to find those values of h such that $A \vec{x}=\overrightarrow{0}$ has a non-trivial solution. We apply elimination to

$$
A=\left(\begin{array}{ccc}
-1 & 2 & 1 \\
3 & -6 & h \\
2 & -5 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & -2 & -1 \\
3 & -6 & h \\
2 & -5 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & -2 & -1 \\
0 & 0 & h+3 \\
0 & -1 & -1
\end{array}\right)
$$

so that

$$
\rightarrow\left(\begin{array}{ccc}
1 & -2 & -1 \\
0 & -1 & -1 \\
0 & 0 & h+3
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & -2 & -1 \\
0 & 1 & 1 \\
0 & 0 & h+3
\end{array}\right)
$$

There is a non-trivial solution if and only if there is a free variable. The only possibility is that the last variable is a free variable, that is, $h+3=0$. So the vectors $(-1,3,2),(2,-6,-5)$ and $(1, h, 1)$ in \mathbb{R}^{3} are linearly dependent if and only if $h=-3$.
5. (15pts) Find the inverse of

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 3 \\
1 & 0 & 8
\end{array}\right)
$$

Solution:

We apply Gauss-Jordan elimination. We first form the super augmented matrix
$\left(\begin{array}{ccc|ccc}1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & -2 & 5 & -1 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & -1 & -5 & -2 & 1\end{array}\right)$
Multiplying the last row by -1 completes the Gaussian elimination:

$$
\left(\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & 0 & 1 & 5 & 2 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & -14 & 6 & 3 \\
0 & 1 & 0 & 13 & -5 & -3 \\
0 & 0 & 1 & 5 & -2 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -40 & 16 & 9 \\
0 & 1 & 0 & 13 & -5 & -3 \\
0 & 0 & 1 & 5 & -2 & -1
\end{array}\right)
$$

The inverse is

$$
A^{-1}=\left(\begin{array}{ccc}
-40 & 16 & 9 \\
13 & -5 & -3 \\
5 & -2 & -1
\end{array}\right)
$$

6. (15pts) (i) Let f be the linear function
$f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2} \quad$ given by $\quad(x, y, z) \longrightarrow(2 x-y+3 z, x+2 y-z)$.
Find a matrix A such that $f(\vec{x})=A \vec{x}$.

Solution: $f(1,0,0)=(2,1), f(0,1,0)=(-1,2)$ and $f(0,0,1)=(3,-1)$ and so

$$
A=\left(\begin{array}{ccc}
2 & -1 & 3 \\
1 & 2 & -1
\end{array}\right)
$$

(ii) Let g be the linear function $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ which represents rotation through $\pi / 2$ about the origin. Find a matrix B such that $g(\vec{x})=B \vec{x}$.

Solution: $g(1,0)=(0,1)$ and $g(0,1)=(-1,0)$ and so

$$
B=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

(iii) Find a matrix C such that $(g \circ f)(\vec{x})=C \vec{x}$.

Solution: Composition of functions corresponds to matrix multiplication:

$$
C=B A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ccc}
2 & -1 & 3 \\
1 & 2 & -1
\end{array}\right)=\left(\begin{array}{ccc}
-1 & -2 & 1 \\
2 & -1 & 3
\end{array}\right) .
$$

7. (10pts) Let h be the linear function $h: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ such that $h(1,1)=$ $(5,4)$ and $h(1,2)=(-1,0)$. Find a matrix D such that $h(\vec{x})=D \vec{x}$.

Solution: $(0,1)=(1,2)-(1,1)$. By linearity

$$
h(0,1)=h(1,2)-h(1,1)=(-1,0)-(5,4)=(-6,-4) .
$$

$(1,0)=(1,1)-(0,1)$. By linearity
$h(1,0)=h(1,1)-h(0,1)=(5,4)-(-6,-4)=(11,8)$.
Therefore

$$
D=\left(\begin{array}{cc}
11 & -6 \\
8 & -4
\end{array}\right)
$$

We check:

$$
\left(\begin{array}{cc}
11 & -6 \\
8 & -4
\end{array}\right)\binom{1}{1}=\binom{5}{4} \quad \text { and } \quad\left(\begin{array}{cc}
11 & -6 \\
8 & -4
\end{array}\right)\binom{1}{2}=\binom{-1}{0}
$$

