You have 50 minutes. This test is closed book, closed notes, no calculators.

There are 7 problems, and the total number of points is 100. Show all your work. Please make your work as clear and easy to follow as possible.

Name:__________________________
Signature:______________________
Student ID #:___________________
Dissertation instructor:________________
Dissertation Number+Time:__________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. (20pts) (i) Show that the matrix
\[
\begin{pmatrix}
1 & -1 & 2 & 3 \\
2 & -2 & 5 & 1 \\
-1 & 1 & -5 & 12
\end{pmatrix}
\]
has echelon form
\[
\begin{pmatrix}
1 & -1 & 2 & 3 \\
0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]

To get full credit for this problem, you must show your steps and explain what row operations you are using at each stage.

Solution:
We apply Gaussian elimination. We multiply the first row by -2 and 1 and add it to the second and third rows:
\[
\begin{pmatrix}
1 & -1 & 2 & 3 \\
2 & -2 & 5 & 1 \\
-1 & 1 & -5 & 12
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & -1 & 2 & 3 \\
0 & 0 & 1 & -5 \\
-3 & 15 & -3 & 15
\end{pmatrix}
\]

Now multiply the second row by 3 and add it to the third row:
\[
\begin{pmatrix}
1 & -1 & 2 & 3 \\
0 & 0 & 1 & -5 \\
0 & 0 & -3 & 15
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & -1 & 2 & 3 \\
0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]

(ii) Identify the basic variables and the free variables of the linear system of question.

Solution:
The pivots are in the first and third columns. So x and z are the basic variables and the remaining variables y and w are the free variables.
2. (20pts)
(i) Find the general solution to the linear equations in parametric form:

\[\begin{align*}
 x - y + 2z + 3w &= 0 \\
 2x - 2y + 5z + w &= 0 \\
 -x + y - 5z + 12w &= 0
\end{align*} \]

Solution: The coefficient matrix is the matrix \(A \) in question (1). We solve the equations from the echelon form using back substitution. By (1) (ii) \(y \) and \(w \) are the free variables.

\[z - 5w = 0 \quad \text{so that} \quad z = 5w. \]

Therefore

\[x - y + 2(5w) + 3w = 0 \quad \text{so that} \quad x = y - 13w. \]

The general form is

\[(x, y, z, w) = (y - 13w, y, 5w, w) = y(1, 1, 0, 0) + w(-13, 0, 5, 1). \]

(ii) Check that \((x, y, z, w) = (1, 1, -1, 1) \) is a solution to

\[\begin{align*}
 x - y + 2z + 3w &= 1 \\
 2x - 2y + 5z + w &= -4 \\
 -x + y - 5z + 12w &= 17
\end{align*} \]

Solution:

\[\begin{align*}
 1 - 1 - 2 + 3 &= 1 \\
 2 - 2 - 5 + 1 &= -4 \\
 -1 + 1 + 5 + 12 &= 17.
\end{align*} \]

(iii) Find the general solution to the linear equations, given in part (ii), in parametric form.

Solution:

The general solution is a sum of the particular solution \((1, 1, -1, 1) \) and the general solution to the homogeneous:

\[(x, y, z, w) = (1, 1, -1, 1) + y(1, 1, 0, 0) + w(-13, 0, 5, 1). \]
3. (10pts) (i) Show that the vectors \((1, 0, 0), (10, 2, 0)\) and \((-15, 3, 1)\) span \(\mathbb{R}^3\).

Solution:
Let \(A\) be the matrix whose columns are the vectors \((1, 0, 0), (10, 2, 0)\) and \((-15, 3, 1)\). We want to show that we can always solve the equation \(A\vec{x} = \vec{b}\). We apply elimination to
\[
A = \begin{pmatrix} 1 & 10 & -15 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 10 & -15 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 \end{pmatrix}
\]
Every row contains a pivot. It follows that the augmented matrix contains no pivots in the last column and the equation \(A\vec{x} = \vec{b}\) is consistent. Therefore the vectors \((1, 0, 0), (10, 2, 0)\) and \((-15, 3, 1)\) span \(\mathbb{R}^3\).

4. (10pts) Find the values of \(h\) for which the vectors \((-1, 3, 2), (2, -6, -5)\) and \((1, h, 1)\) in \(\mathbb{R}^3\) are linearly dependent.

Solution: Let \(A\) be the matrix whose columns are the vectors \((-1, 3, 2), (2, -6, -5)\) and \((1, h, 1)\). We want to find those values of \(h\) such that \(A\vec{x} = \vec{0}\) has a non-trivial solution. We apply elimination to
\[
A = \begin{pmatrix} -1 & 2 & 1 \\ 3 & -6 & h \\ 2 & -5 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -1 \\ 3 & -6 & h \\ 2 & -5 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & h + 3 \end{pmatrix}
\]
so that
\[
\rightarrow \begin{pmatrix} 1 & -2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & h + 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & h + 3 \end{pmatrix}.
\]
There is a non-trivial solution if and only if there is a free variable. The only possibility is that the last variable is a free variable, that is, \(h + 3 = 0\). So the vectors \((-1, 3, 2), (2, -6, -5)\) and \((1, h, 1)\) in \(\mathbb{R}^3\) are linearly dependent if and only if \(h = -3\).
5. (15pts) Find the inverse of
\[
\begin{pmatrix}
1 & 2 & 3 \\
2 & 5 & 3 \\
1 & 0 & 8
\end{pmatrix}.
\]

Solution:
We apply Gauss-Jordan elimination. We first form the super augmented matrix
\[
\begin{pmatrix}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 5 & 3 & 0 & 1 & 0 \\
1 & 0 & 8 & 0 & 0 & 1
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & -2 & 5 & -1 & 0 & 1
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & 0 & -1 & -5 & -2 & 1
\end{pmatrix}
\]
Multiplying the last row by -1 completes the Gaussian elimination:
\[
\begin{pmatrix}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & 0 & 1 & 5 & -2 & -1
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 0 & 13 & -5 & -3 \\
0 & 0 & 1 & 5 & -2 & -1
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 & 0 & -40 & 16 & 9 \\
0 & 1 & 0 & 13 & -5 & -3 \\
0 & 0 & 1 & 5 & -2 & -1
\end{pmatrix}
\]
The inverse is
\[
A^{-1} = \begin{pmatrix}
-40 & 16 & 9 \\
13 & -5 & -3 \\
5 & -2 & -1
\end{pmatrix}.
\]
6. (15pts) (i) Let \(f \) be the linear function
\[
 f : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \quad \text{given by} \quad (x, y, z) \mapsto (2x - y + 3z, x + 2y - z).
\]
Find a matrix \(A \) such that \(f(\vec{x}) = A\vec{x} \).

Solution: \(f(1, 0, 0) = (2, 1) \), \(f(0, 1, 0) = (-1, 2) \) and \(f(0, 0, 1) = (3, -1) \) and so
\[
 A = \begin{pmatrix} 2 & -1 & 3 \\ 1 & 2 & -1 \end{pmatrix}
\]

(ii) Let \(g \) be the linear function \(g : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) which represents rotation through \(\pi/2 \) about the origin. Find a matrix \(B \) such that \(g(\vec{x}) = B\vec{x} \).

Solution: \(g(1, 0) = (0, 1) \) and \(g(0, 1) = (-1, 0) \) and so
\[
 B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
\]

(iii) Find a matrix \(C \) such that \((g \circ f)(\vec{x}) = C\vec{x} \).

Solution: Composition of functions corresponds to matrix multiplication:
\[
 C = BA = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 & 3 \\ 1 & 2 & -1 \end{pmatrix} = \begin{pmatrix} -1 & -2 & 1 \\ 2 & -1 & 3 \end{pmatrix}.
\]
7. (10pts) Let \(h \) be the linear function \(h: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) such that \(h(1, 1) = (5, 4) \) and \(h(1, 2) = (-1, 0) \). Find a matrix \(D \) such that \(h(\vec{x}) = D\vec{x} \).

Solution: \((0, 1) = (1, 2) - (1, 1)\). By linearity
\[
h(0, 1) = h(1, 2) - h(1, 1) = (-1, 0) - (5, 4) = (-6, -4).
\]

\((1, 0) = (1, 1) - (0, 1)\). By linearity
\[
h(1, 0) = h(1, 1) - h(0, 1) = (5, 4) - (-6, -4) = (11, 8).
\]

Therefore
\[
D = \begin{pmatrix} 11 & -6 \\ 8 & -4 \end{pmatrix}.
\]

We check:
\[
\begin{pmatrix} 11 & -6 \\ 8 & -4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \end{pmatrix} \text{ and } \begin{pmatrix} 11 & -6 \\ 8 & -4 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}.
\]