SECOND MIDTERM MATH 20F, UCSD, AUTUMN 14

You have 50 minutes. This test is closed book, closed notes, no calculators.
There are 6 problems, and the total number of points is 100 . Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature: \qquad
Student ID \#: \qquad
Dissertation instructor: \qquad
Dissertation Number+Time: \qquad

Problem	Points	Score
1	20	
2	15	
3	30	
4	15	
5	10	
6	10	
Total	100	

1. (20pts) Suppose that A and B are 3×3 matrices. If $\operatorname{det} A=5$ and $\operatorname{det} B=-3$ what are
(i) $\operatorname{det} A^{T}$?

Solution: $\operatorname{det} A^{T}=\operatorname{det} A=5$.
(ii) $\operatorname{det} A^{-1}$?

Solution: $\operatorname{det} A^{-1}=1 / \operatorname{det} A=1 / 5$.
(iii) $\operatorname{det} A B$?

Solution: $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B=-15$.
(iv) $\operatorname{det} 2 A$?

Solution: $\operatorname{det} 2 A=2^{3} \operatorname{det} A=40$.
2. (15pts) Suppose that A is 9×16 matrix. Justify your answers to the following questions:
(i) What is the largest possible rank of A and the smallest possible dimension of the nullspace of A ?

Solution: The maximum number of pivots is 9 and the rank is the number of pivots. So the rank is no larger than 9 .
By rank-nullity the rank plus the nullity is 16 . Therefore the smallest possible nullity is 7 .
(ii) What is the largest possible rank of A^{T} and the smallest possible dimension of the nullspace of A^{T} ?

Solution: The maximum number of pivots is 9 and the rank is the number of pivots. So the rank is no larger than 9 .
By rank-nullity the rank plus the nullity is 9 . Therefore the smallest possible nullity is 0 .
(iii) Suppose that the set of $\vec{b} \in \mathbb{R}^{9}$ for which $A \vec{x}=\vec{b}$ has a solution is a subspace of dimension four. What is the dimension of the nullspace of A ?

Solution: We are told the dimension of the column space is 4 . Therefore the rank is 4 . By rank-nullity the rank plus the nullity is 16 . Therefore the nullity is 12 .
3. (30pts) Consider the matrix

$$
A=\left(\begin{array}{cccc}
4 & 4 & 0 & 4 \\
-3 & -6 & -3 & -9 \\
0 & 2 & 2 & 4
\end{array}\right)
$$

(i) Find a basis for the nullspace of A.

Solution: We apply Gaussian elimination:

$$
\rightarrow\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 2 & 1 & 3 \\
0 & 1 & 1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 2 \\
0 & 1 & 1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The elimination is complete.
There are pivots in the first and second rows and columns. x_{1} and x_{2} are basic variables, x_{3} and x_{4} are free variables.

$$
x_{2}+x_{3}+2 x_{4}=0 \quad \text { so that } \quad x_{2}=-x_{3}-2 x_{4} .
$$

Therefore

$$
x_{1}-x_{3}-2 x_{4}+x_{4}=0 \quad \text { so that } \quad x_{1}=x_{3}+x_{4} .
$$

Thus

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{3}+x_{4},-x_{3}-2 x_{4}, x_{3}, x_{4}\right)=x_{3}(1,-1,1,0)+x_{4}(1,-2,0,1) .
$$

Therefore

$$
\vec{n}_{1}=(1,-1,1,0) \quad \text { and } \quad \vec{n}_{2}=(1,-2,0,1)
$$

is a basis for the nullspace.
(ii) Find a basis for the column space of A.

Solution: The pivots are in the first and second column. Therefore the first and second columns of A are a basis for the column space:

$$
\vec{c}_{1}=(4,-3,0) \quad \text { and } \quad \vec{c}_{2}=(4,-6,2)
$$

are a basis for the column space.
(iii) What is the rank of A ?

Solution: 2.
(iv) Find a basis for the row space of A^{T}.

Solution: We apply Gaussian elimination to the transpose of A :
$\left(\begin{array}{lll}4 & -3 & 0 \\ 4 & -6 & 2 \\ 0 & -3 & 2 \\ 4 & -9 & 4\end{array}\right) \rightarrow\left(\begin{array}{ccc}1 & -3 / 4 & 0 \\ 4 & -6 & 2 \\ 0 & -3 & 2 \\ 4 & -9 & 4\end{array}\right) \rightarrow\left(\begin{array}{ccc}1 & -3 / 4 & 0 \\ 0 & -3 & 2 \\ 0 & -3 & 2 \\ 0 & -6 & 4\end{array}\right) \rightarrow\left(\begin{array}{ccc}1 & -3 / 4 & 0 \\ 0 & 1 & -2 / 3 \\ 0 & -3 & 2 \\ 0 & -6 & 4\end{array}\right)$
so that

$$
\rightarrow\left(\begin{array}{ccc}
1 & -3 / 4 & 0 \\
0 & 1 & -2 / 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The elimination is complete. The vectors

$$
\vec{r}_{1}=(1,-3 / 4,0) \quad \text { and } \quad \vec{r}_{2}=(0,1,-2 / 3)
$$

are a basis of the row space of A^{T}.
(v) Use the basis from part (iv) to find another basis for the column space of A.

Solution: The vectors

$$
\overrightarrow{d_{1}}=(1,-3 / 4,0) \quad \text { and } \quad \vec{d}_{2}=(0,1,-2 / 3)
$$

are a basis of the column space of A.
5. (15pts) Find the following determinant:

$$
\left|\begin{array}{cccc}
1 & 4 & 2 & 3 \\
0 & 1 & 4 & 4 \\
-1 & 0 & 1 & 0 \\
2 & 0 & 4 & 1
\end{array}\right|
$$

Solution:

$$
\begin{aligned}
=-\left|\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
0 & 1 & 4 & 4 \\
1 & 4 & 2 & 3 \\
2 & 0 & 4 & 1
\end{array}\right| & =\left|\begin{array}{lll}
1 & 4 & 4 \\
4 & 2 & 3 \\
0 & 4 & 1
\end{array}\right|-\left|\begin{array}{lll}
0 & 1 & 4 \\
1 & 4 & 3 \\
2 & 0 & 1
\end{array}\right| \\
& =-\left|\begin{array}{lll}
0 & 4 & 1 \\
4 & 2 & 3 \\
1 & 4 & 4
\end{array}\right|+\left|\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right|-4\left|\begin{array}{ll}
1 & 4 \\
2 & 0
\end{array}\right| \\
& =4\left|\begin{array}{ll}
4 & 3 \\
1 & 4
\end{array}\right|-\left|\begin{array}{ll}
4 & 2 \\
1 & 4
\end{array}\right|+\left|\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right|-4\left|\begin{array}{ll}
1 & 4 \\
2 & 0
\end{array}\right| \\
& =4(4 \cdot 4-3)-(4 \cdot 4-2)-5-4(-4 \cdot 2) \\
& =52-14-5+32 \\
& =65 .
\end{aligned}
$$

6. (10pts) For which scalars h are the vectors $\vec{v}_{1}=(h, 1,1), \vec{v}_{2}=$ $(-2,-h, 3)$ and $\vec{v}_{3}=(0,1,-1)$ a basis of \mathbb{R}^{3} ?

Solution: Let

$$
A=\left(\begin{array}{ccc}
h & -2 & 0 \\
1 & -h & 1 \\
1 & 3 & -1
\end{array}\right)
$$

be the matrix whose columns are the vectors \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3}.
Then \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3} are a basis if and only if A is invertible. A is invertible if and only if $\operatorname{det} A \neq 0$. We compute the determinant:
$\left|\begin{array}{ccc}h & -2 & 0 \\ 1 & -h & 1 \\ 1 & 3 & -1\end{array}\right|=h\left|\begin{array}{cc}-h & 1 \\ 3 & -1\end{array}\right|+2\left|\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right|=h(h-3)+2(-2)=h^{2}-3 h-4=(h-4)(h+1)$.
The determinant is zero if and only if $h=-1$ or $h=4$.
Thus \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3} are a basis if and only if h is equal to neither -1 nor 3 .
7. (10pts) Are the following subsets of \mathbb{R}^{n} linear subspaces? Explain your answer.

$$
\begin{equation*}
H=\left\{(a, b, c) \in \mathbb{R}^{3} \mid a+b+c=-1\right\} . \tag{i}
\end{equation*}
$$

Solution: No. $\overrightarrow{0} \notin H$.
(ii)

$$
H=\left\{(a, b, c, d) \in \mathbb{R}^{3} \mid 3 a+b=c \quad a+b+2 c=2 d\right\} .
$$

Solution: Yes. H is the set of solutions to the homogeneous linear equations:

$$
\begin{aligned}
3 a+b-c & =0 \\
a+b+2 c-2 d & =0
\end{aligned}
$$

Thus H is the null space of the matrix

$$
\left(\begin{array}{cccc}
3 & 1 & -1 & 0 \\
1 & 1 & 2 & -2
\end{array}\right) .
$$

