PRACTICE PROBLEMS FOR THE FIRST MIDTERM

Here are a slew of practice problems for the first midterm culled from old midterms:

1. Are the vectors

$$\vec{v}_1 = \begin{pmatrix} 1\\0\\2 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} 0\\1\\2 \end{pmatrix}, \quad \vec{v}_3 = \begin{pmatrix} 2\\2\\1 \end{pmatrix}, \quad \text{and} \quad \vec{v}_4 = \begin{pmatrix} 0\\-2\\3 \end{pmatrix}$$

linearly independent? If yes, explain why. If not find a non-trivial relation between these vectors.

2. Consider the matrix

$$A = \begin{pmatrix} 1 & -2 & 1 & 4 \\ 1 & -1 & 2 & 0 \\ -2 & 4 & 1 & 0 \end{pmatrix}.$$

(a) Find a matrix in echelon form which is row equivalent to A.

(b) Describe the solution set to the equation $A\vec{x} = \vec{0}$.

(c) Is there a vector $\vec{b} \in \mathbb{R}^3$ so that $A\vec{x} = \vec{b}$ has no solution? Justify your answer.

3. (a) Suppose a linear transformation $T: \mathbb{R}^5 \longrightarrow \mathbb{R}^6$ is one-to-one and expressed as $T(\vec{x}) = A\vec{x}$ for some matrix A. Determine the shape of A and the number of pivots.

(b) Suppose a linear transformation $T: \mathbb{R}^7 \longrightarrow \mathbb{R}^4$ is onto and expressed as $T(\vec{x}) = A\vec{x}$. Determine the shape of A and the number of pivots.

(c) Let

$$A = \begin{pmatrix} 2 & 1\\ 3 & 0\\ 5 & 2 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 5\\ -2 & 3 \end{pmatrix}$$

Which of the following products are defined? Calculate the ones that are defined.

AB, BA, A^2 and B^2 .

4. Let $f(x_1, x_2, x_3) = (x_1 - 3x_2 + 2x_3, 2x_1 + 5x_2 - x_3)$. Find the matrix *A* associated to this function. Find a vector $\vec{x} = (x_1, x_2, x_3)$ such that $f(\vec{x}) = (1, 1)$.

5. Find the solution set S to the following equations:

$$x_1 + x_3 + x_4 = 1$$

$$2x_2 + x_3 + x_4 = 0$$

$$x_1 + 2x_2 + x_3 = 0.$$

How many solutions are there? 6.

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$$

How many solutions does the homogeneous equation $A\vec{x} = \vec{0}$ have? 7. Do the vectors

$$\vec{v}_1 = \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} 2\\-1\\3 \end{pmatrix}, \quad \text{and} \quad \vec{v}_3 = \begin{pmatrix} 1\\5\\0 \end{pmatrix}$$

span \mathbb{R}^3 ?

8. Consider the matrix A and the vector \vec{b} given by

$$\begin{pmatrix} 1 & -2 & 1 \\ 3 & 2 & 6 \\ 1 & 1 & -2 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}.$$

(a) Find the inverse of A. Justify your answer.

(b) Find the solution of the equation $A\vec{x} = \vec{b}$. Justify your answer. 9. Consider the matrices

$$A = \begin{pmatrix} 1 & 3 & -2 \\ 2 & 4 & -1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}$$

Find a matrix C such that BC = A.

10. The echelon form of the matrix \boldsymbol{A} is

$$\begin{pmatrix} 1 & * & * & * & * \\ 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

where *'s denote arbitrary numbers.

(a) Does $A\vec{x} = \vec{0}$ have non-trivial solutions? You must give a reason to receive credit.

(b) Does $A\vec{x} = \vec{b}$ have at least one solution for every $\vec{b} \in \mathbb{R}^4$? You must give a reason to receive credit.

11. Write down the augmented matrix for the following linear equations and use it to find all solutions to the equations:

$$x_1 - x_2 + 2x_3 = 2$$

$$2x_1 + x_2 - 2x_3 = 4$$

$$x_1 - 4x_2 + 8x_3 = 2.$$

12. You need not give reasons in this problem

(a) For which values of p is it possible to find $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ so that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ span \mathbb{R}^4 ?

(b) For which values of p is it possible to find $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ so that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are linearly independent?

13. Let A be the following matrix

$$\begin{pmatrix} 0 & 2 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \beta & 3 & 2 & 3 \\ 1 & 5 & 1 & 1 \end{pmatrix}.$$

- (a) For which values of β is *B* invertible?
- (b) Find all solutions to $A\vec{x} = \vec{0}$ in this case.

14. Describe the general solution to the system of equations

$$x_1 - x_2 + 3x_3 = 2$$

$$-2x_1 - 2x_2 + 2x_3 = 0$$

$$3x_1 + x_2 + x_2 = 2$$

in parametric form.

15. Let C be the matrix

$$C = \begin{pmatrix} 1 & -1 & 3 \\ -2 & -2 & 2 \\ 3 & 1 & 1 \end{pmatrix}.$$

(a) Describe the general solution to the homogeneous equation $C\vec{x} = \vec{0}$.

(b) Does the system $C\vec{x} = \vec{b}$ have solutions for all possible choices of $\vec{b} \in \mathbb{R}^3$? Explain your answer.

16. Answer the following questions True or False. No explanations need be given.

(a) If A is any 5×7 matrix, then $A\vec{x} = \vec{0}$ has only the trivial solution $\vec{x} = \vec{0}$.

(b) The columns of a 5×7 matrix always span \mathbb{R}^5 .

(c) The columns of a 5×7 matrix are always linearly dependent.

17. Let A be the 4×3 matrix

$$A = \begin{pmatrix} 1 & -2 & k \\ 3 & h & 0 \\ 0 & 2 & 4 \\ 1 & 0 & 2 \end{pmatrix}.$$

Find all possible values of the parameters h and k for which the columns of A are linearly dependent. 18. Let $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be a linear transformation such that

$$f(\vec{e}_1) = (3, -2)$$
 $f(\vec{e}_2) = (3, 0)$ and $f(\vec{e}_3) = (-3, 1).$

Find the matrix associated to f. 19. Let

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$$
 given by $(x_1, x_2, x_3) \longrightarrow (-4x_2 - 4x_3, -2x_1 + 9x_2 + 5x_3, -x_1 - 2x_3, 3x_2 + 3x_3)$

- (a) Is f one-to-one? Why?
- (b) Is f onto? Why?