PRACTICE PROBLEMS FOR THE FIRST MIDTERM

Here are a slew of practice problems for the first midterm culled from old midterms:

1. Are the vectors

$$
\vec{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right), \quad \vec{v}_{3}=\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right), \quad \text { and } \quad \vec{v}_{4}=\left(\begin{array}{c}
0 \\
-2 \\
3
\end{array}\right)
$$

linearly independent? If yes, explain why. If not find a non-trivial relation between these vectors.
2. Consider the matrix

$$
A=\left(\begin{array}{cccc}
1 & -2 & 1 & 4 \\
1 & -1 & 2 & 0 \\
-2 & 4 & 1 & 0
\end{array}\right)
$$

(a) Find a matrix in echelon form which is row equivalent to A.
(b) Describe the solution set to the equation $A \vec{x}=\overrightarrow{0}$.
(c) Is there a vector $\vec{b} \in \mathbb{R}^{3}$ so that $A \vec{x}=\vec{b}$ has no solution? Justify your answer.
3. (a) Suppose a linear transformation $T: \mathbb{R}^{5} \longrightarrow \mathbb{R}^{6}$ is one-to-one and expressed as $T(\vec{x})=A \vec{x}$ for some matrix A. Determine the shape of A and the number of pivots.
(b) Suppose a linear transformation $T: \mathbb{R}^{7} \longrightarrow \mathbb{R}^{4}$ is onto and expressed as $T(\vec{x})=A \vec{x}$. Determine the shape of A and the number of pivots.
(c) Let

$$
A=\left(\begin{array}{ll}
2 & 1 \\
3 & 0 \\
5 & 2
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
1 & 5 \\
-2 & 3
\end{array}\right)
$$

Which of the following products are defined? Calculate the ones that are defined.

$$
A B, \quad B A, \quad A^{2} \quad \text { and } \quad B^{2} .
$$

4. Let $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-3 x_{2}+2 x_{3}, 2 x_{1}+5 x_{2}-x_{3}\right)$. Find the matrix A associated to this function. Find a vector $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ such that $f(\vec{x})=(1,1)$.
5. Find the solution set S to the following equations:

$$
\begin{array}{r}
x_{1}+x_{3}+x_{4}=1 \\
2 x_{2}+x_{3}+x_{4}=0 \\
x_{1}+2 x_{2}+x_{3}=0 .
\end{array}
$$

How many solutions are there?
6.

$$
A=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

How many solutions does the homogeneous equation $A \vec{x}=\overrightarrow{0}$ have?
7. Do the vectors

$$
\vec{v}_{1}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right), \quad \text { and } \quad \vec{v}_{3}=\left(\begin{array}{l}
1 \\
5 \\
0
\end{array}\right)
$$

span \mathbb{R}^{3} ?
8. Consider the matrix A and the vector \vec{b} given by

$$
\left(\begin{array}{ccc}
1 & -2 & 1 \\
3 & 2 & 6 \\
1 & 1 & -2
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)
$$

(a) Find the inverse of A. Justify your answer.
(b) Find the solution of the equation $A \vec{x}=\vec{b}$. Justify your answer.
9. Consider the matrices

$$
A=\left(\begin{array}{lll}
1 & 3 & -2 \\
2 & 4 & -1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right)
$$

Find a matrix C such that $B C=A$.
10. The echelon form of the matrix A is

$$
\left(\begin{array}{ccccc}
1 & * & * & * & * \\
0 & 0 & 0 & 1 & * \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

where $*$'s denote arbitrary numbers.
(a) Does $A \vec{x}=\overrightarrow{0}$ have non-trivial solutions? You must give a reason to receive credit.
(b) Does $A \vec{x}=\vec{b}$ have at least one solution for every $\vec{b} \in \mathbb{R}^{4}$? You must give a reason to receive credit.
11. Write down the augmented matrix for the following linear equations and use it to find all solutions to the equations:

$$
\begin{array}{r}
x_{1}-x_{2}+2 x_{3}=2 \\
2 x_{1}+x_{2}-2 x_{3}=4 \\
x_{1}-4 x_{2}+8 x_{3}=2 .
\end{array}
$$

12. You need not give reasons in this problem
(a) For which values of p is it possible to find $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ so that $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ span \mathbb{R}^{4} ?
(b) For which values of p is it possible to find $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ so that $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ are linearly independent?
13. Let A be the following matrix

$$
\left(\begin{array}{llll}
0 & 2 & 1 & 0 \\
0 & 1 & 0 & 0 \\
\beta & 3 & 2 & 3 \\
1 & 5 & 1 & 1
\end{array}\right)
$$

(a) For which values of β is B invertible?
(b) Find all solutions to $A \vec{x}=\overrightarrow{0}$ in this case.
14. Describe the general solution to the system of equations

$$
\begin{aligned}
x_{1}-x_{2}+3 x_{3} & =2 \\
-2 x_{1}-2 x_{2}+2 x_{3} & =0 \\
3 x_{1}+x_{2}+x_{2} & =2
\end{aligned}
$$

in parametric form.
15. Let C be the matrix

$$
C=\left(\begin{array}{ccc}
1 & -1 & 3 \\
-2 & -2 & 2 \\
3 & 1 & 1
\end{array}\right)
$$

(a) Describe the general solution to the homogeneous equation $C \vec{x}=\overrightarrow{0}$.
(b) Does the system $C \vec{x}=\vec{b}$ have solutions for all possible choices of $\vec{b} \in \mathbb{R}^{3}$? Explain your answer.
16. Answer the following questions True or False. No explanations need be given.
(a) If A is any 5×7 matrix, then $A \vec{x}=\overrightarrow{0}$ has only the trivial solution $\vec{x}=\overrightarrow{0}$.
(b) The columns of a 5×7 matrix always span \mathbb{R}^{5}.
(c) The columns of a 5×7 matrix are always linearly dependent.
17. Let A be the 4×3 matrix

$$
A=\left(\begin{array}{ccc}
1 & -2 & k \\
3 & h & 0 \\
0 & 2 & 4 \\
1 & 0 & 2
\end{array}\right)
$$

Find all possible values of the parameters h and k for which the columns of A are linearly dependent.
18. Let $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be a linear transformation such that

$$
f\left(\vec{e}_{1}\right)=(3,-2) \quad f\left(\vec{e}_{2}\right)=(3,0) \quad \text { and } \quad f\left(\vec{e}_{3}\right)=(-3,1) .
$$

Find the matrix associated to f.
19. Let
$f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4}$ given by $\left(x_{1}, x_{2}, x_{3}\right) \longrightarrow\left(-4 x_{2}-4 x_{3},-2 x_{1}+9 x_{2}+5 x_{3},-x_{1}-2 x_{3}, 3 x_{2}+3 x_{3}\right)$.
(a) Is f one-to-one? Why?
(b) Is f onto? Why?

