PRACTICE PROBLEMS FOR THE SECOND MIDTERM

Here are a slew of practice problems for the second midterm culled from old midterms:

1. Let

$$
A=\left(\begin{array}{ccc}
1 & 3 & 1 \\
1 & 4 & 5 \\
2 & 8 & 11
\end{array}\right)
$$

Compute A^{-1}.
2. Let

$$
A=\left(\begin{array}{lll}
2 & 3 & 0 \\
1 & 3 & 5 \\
0 & 2 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
4 & 0 & -1 \\
0 & -3 & 4 \\
0 & 4 & 3
\end{array}\right)
$$

(a) Compute $\operatorname{det} A$.
(b) Compute $\operatorname{det} B$.
(c) Compute $\operatorname{det} A B$.
(d) Compute $\operatorname{det} A^{T}$.
(e) Which of $A, B, A B$ and A^{T} are invertible?
3. Let

$$
A=\left(\begin{array}{ccc}
2 & 4 & 6 \\
2 & 5 & 8 \\
-2 & -3 & -4
\end{array}\right)
$$

(a) Find a basis for $\operatorname{Col}(A)$.
(b) Find a basis for $\operatorname{Row}(A)$.
(c) Find a basis for $\operatorname{Nul}(A)$.
3. (a) If a 7×5 matrix A has rank 2 find:
(i) $\operatorname{dim} \operatorname{Nul}(A)$.
(ii) $\operatorname{rank}\left(A^{T}\right)$.
(b) If the null space of a 4×6 matrix A is 3 -dimensional, what is $\operatorname{dim} \operatorname{Col}(A)$?
4. The sets

$$
\mathcal{B}=\{(-1,8),(1,-7)\} \quad \text { and } \quad \mathcal{C}=\{(1,2),(1,1)\}
$$

are both bases of \mathbb{R}^{2}.
Find the coordinates of the vectors in \mathcal{B} in terms of the basis \mathcal{C}.
5. Let

$$
A=\left(\begin{array}{ccccc}
1 & -1 & 2 & 3 & 0 \\
2 & -1 & 4 & 11 & 3 \\
-1 & 3 & -2 & 8 & 4 \\
1 & 1 & 2 & 14 & 4
\end{array}\right)
$$

(a) Find a basis for $\operatorname{Col}(A)$.
(b) Find a basis for $\operatorname{Row}(A)$.
(c) Find a basis for $\operatorname{Nul}(A)$.
6. Find the determinant of the matrix

$$
\left(\begin{array}{cccc}
2 & 3 & -2 & 1 \\
0 & 2 & 5 & 4 \\
0 & -3 & 2 & -3 \\
0 & 1 & 1 & 2
\end{array}\right)
$$

7. Let P_{2} denote the space of polynomials of degree no greater than 2 .

Let

$$
W=\left\{p \in P_{2} \mid p(-2)=0\right\} .
$$

(a) Verify that H is a linear subspace of P_{2}.
(b) Give a careful definition of what is meant by a basis for a vector space.
(c) Find a basis for H. Justify your answer.
8. Let

$$
A=\left(\begin{array}{ccc}
1 & 5 & -1 \\
3 & 7 & -11 \\
-2 & -2 & 10
\end{array}\right)
$$

Is the vector

$$
\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

in the column space of A ? Justify your answer.
9. (a) If A is a 4×3 matrix, what is the largest dimension of the row space of A ?
(b) If A is a 3×4 matrix, what is the largest dimension of the row space of A ?
10. Let A be an $m \times n$ matrix. Show that the null space of A

$$
\operatorname{Nul} A=\left\{\vec{x} \in \mathbb{R}^{n} \mid A \vec{x}=\overrightarrow{0}\right\}
$$

is closed under vector addition.
11. Suppose A is $n \times n$ and for some $\vec{b} \in \mathbb{R}^{n}$ the equation $A \vec{x}=\vec{b}$ has more than one solution. Can the columns of A span \mathbb{R}^{n}. Why or why not? Explain.
12. True or False:
(a) If A and B are two 3×3 matrices and

$$
B=\left(\begin{array}{lll}
\vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3}
\end{array}\right)
$$

then

$$
A B=\left(A \vec{b}_{1}+A \vec{b}_{2}+A \vec{b}_{3}\right)
$$

(b) A plane in \mathbb{R}^{2} is a two dimensional linear subspace of \mathbb{R}^{3}.
(c) If

$$
\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}
$$

is a linearly independent set in a vector space V then $\operatorname{dim} V \geq p$.
(d) If \vec{u} and \vec{v} are two vectors in \mathbb{R}^{3} then the rank of the matrix $\vec{u} \vec{v}^{T}$ is always 0 or 1 .
(e) For a 3×3 matrix A, $\operatorname{det}(3 A)=3 \operatorname{det}(A)$.
13. Let $f_{0}(t)=1, f_{1}(t)=1+t, f_{2}(t)=1+t+t^{2}, f_{3}(t)=t^{3}$.
(a) Show that

$$
\mathcal{B}=\left\{f_{0}(t), f_{1}(t), f_{2}(t), f_{3}(t)\right\}
$$

is a basis for the vector space P_{3} of all polynomials of degree at most 3.
(b) Find the coordinates of the polynomial $f(t)=t^{2}+t^{3}$ relative to \mathcal{B}.
14. Let

$$
A=\left(\begin{array}{ccccc}
2 & 1 & -1 & 0 & 3 \\
0 & 2 & 0 & 0 & 2 \\
0 & 3 & 0 & 0 & -1 \\
1 & 2 & 3 & 4 & 5 \\
0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

Compute $\operatorname{det} A$. Find a basis for the column space of A. What is the rank and the nullity of A ?
15. If

$$
f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4}
$$

is a linear map and $\operatorname{Nul}(f)=\operatorname{Span}\left\{\vec{e}_{1}\right\}$, what is the dimension of the image of f ?
16. Is

$$
\mathcal{B}=\left\{\left(\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
3 \\
2
\end{array}\right), \quad\left(\begin{array}{c}
-6 \\
11 \\
10
\end{array}\right)\right\}
$$

a basis for \mathbb{R}^{3} ?
17. Find b such that $(-1, b, 2,3)$ is in the span of $(1,2,3,4)$ and $(3,4,4,5)$.
18. Can you give a simple reason why $\operatorname{det}(A)=0$?
(a)

$$
A=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
-5 & 6 & 7 & 8 \\
-9 & 10 & 11 & 12 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(b)

$$
A=\left(\begin{array}{cccc}
1 & 2 & 0 & 3 \\
-6 & 5 & 0 & 4 \\
-7 & 8 & 0 & 9 \\
12 & 11 & 0 & 10
\end{array}\right)
$$

(c)

$$
A=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
10 & 20 & 30 & 40
\end{array}\right)
$$

19.

$$
A=\left(\begin{array}{llll}
0 & 2 & 1 & 0 \\
0 & 1 & 0 & 0 \\
\beta & 3 & 2 & 3 \\
1 & 5 & 1 & 1
\end{array}\right)
$$

(a) For which values of β is A invertible?
(b) Asssuming A is singular then find the rank of A, the nullity of A and $\operatorname{Nul}(A)$.
20. Suppose that b_{1}, b_{2}, b_{3} and b_{4} are real numbers. Show that there is exactly one polynomial $p(t)$ in the vector space P_{3} of polynomials of degree at most 3 such that:
$p(1)=b_{1}, \quad p^{\prime}(0)=b_{2}, \quad \int_{-1}^{1} p(t) \mathrm{d} t=b_{3}, \quad$ and $\quad p(-1)=b_{4}$.
21. Let

$$
H=\operatorname{Span}\{\vec{u}, \vec{v}\} \quad \text { and } \quad K=\operatorname{Span}\{\vec{u}, \vec{v}, \vec{u}+\vec{v}\} .
$$

Prove that $H=K$.
22. Suppose that $A^{2}=0$. Prove that A is not invertible.

