PRACTICE PROBLEMS FOR THE FINAL

Here are a slew of practice problems for the final culled from old exams:

1. Let P_{2} be the vector space of polynomials of degree at most 2 . Let

$$
\mathcal{B}=\left\{1,(t-2)^{2}, t^{2}+t\right\} .
$$

(a) Show that \mathcal{B} is a basis of P_{2}.
(b) Write $5 t^{2}+5$ as a linear combination of the elements of \mathcal{B}.
2. Let A be the matrix:

$$
\left(\begin{array}{ccc}
2 & -1 & -1 \\
1 & 4 & 1 \\
-1 & -1 & 2
\end{array}\right)
$$

(a) Determine the eigenvalues of A.
(b) Find a basis for each eigenspace of A.
(c) Diagonalise A.
3. Let W be the subspace of \mathbb{R}^{4} spanned by

$$
\vec{x}_{1}=(1,-3,0,1) \quad \text { and } \quad \vec{x}_{2}=(5,-5,-1,2) .
$$

(a) Use the Gram-Schmidt process to find an orthonormal basis for W.
(b) Find the projection of

$$
\vec{y}=(1,2,1,4)
$$

onto W.
(c) Find the distance from \vec{y} to W.
(d) Find a basis for W^{\perp}.
4. Fully justify each answer.
(a) Show that the set of eigenvalues of a square matrix A is the same as the eigenvalues of the matrix A^{T}.
(b) Suppose that A is a square matrix with distinct eigenvalues λ_{1} and λ_{2}. Suppose that \vec{x}_{1} and \vec{x}_{2} are (non-zero) eigenvectors with eigenvalues λ_{1} and λ_{2}. Show that \vec{x}_{1} and \vec{x}_{2} are linearly independent.
5. Orthogonally diagonalise the following symmetric matrix

$$
\left(\begin{array}{ccc}
3 & -2 & 4 \\
-2 & 6 & 2 \\
4 & 2 & 3
\end{array}\right)
$$

6. Find a least squares solution to $A \vec{x}=\vec{b}$ where:

$$
A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 1 \\
-1 & 1 & -1
\end{array}\right) \quad \vec{b}=\left(\begin{array}{l}
2 \\
5 \\
6 \\
6
\end{array}\right)
$$

Is this solution unique?
7. Suppose that V is a vector space with subspaces U and W. Justify your answer to the following by providing a proof or a counterexample:
(a) Is

$$
U \cap W=\{v \in V \mid v \in U \text { and } v \in W\}
$$

a subspace of V ?
(b) Is

$$
U \cup W=\{v \in V \mid v \in U \text { or } v \in W\}
$$

a subspace of V ?
8. As always, justify your answer.
(a) Is it possible that all solutions to a homogeneous system of 10 equations with 12 unknowns are multiples of all single non-zero vector?
(b) Is it possible for a system of 6 equations with 5 unknowns to have a unique solution for a fixed right hand side of constants.
(c) Show that if A is diagonalisable and invertible, then so is A^{-1}.
9. (a) Let

$$
\mathcal{D}=\left\{f(x) \in P_{n} \mid f^{\prime}(0)=0\right\}
$$

denote the subset of the polynomials of degree at most n whose derivative at zero is 0 . Verify that \mathcal{D} is a linear subspace of P_{n}.
(b) Suppose

$$
A=\left(\begin{array}{cccc}
2 & -1 & 0 & 3 \\
-1 & 0 & 3 & 2
\end{array}\right)
$$

Find a basis for $\operatorname{Col}(A)$ and $\operatorname{Nul}(A)$. What is $\operatorname{rank}(A)$?
(c) Suppose that A is an $m \times n$ matrix with $m<n$. Suppose $\operatorname{rank}(A)<$ n. Is it possible that the columns of A span \mathbb{R}^{m} ? Why or why not?
(d) Suppose that

$$
H=\left\{\left.\left(\begin{array}{l}
a+2 b+3 c \\
a+2 b+3 c \\
a+2 b+3 c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}
$$

Find a basis for H.
10. (a) Suppose

$$
A=\left(\begin{array}{ccc}
3 & -3 & 5 \\
0 & 4 & -3 \\
0 & 2 & -1
\end{array}\right)
$$

Find the eigenvalues of A with multiplicity.
(b) Diagonalise the matrix A from (a).
(c) Suppose B has eigenvalues 2 and 3 with corresponding eigenvectors \vec{x} and \vec{y} respectively. Suppose $\vec{z}=10 \vec{x}+2 \vec{y}$. Compute $B^{100} \vec{z}$. You may leave your answer in terms of \vec{x} and \vec{y}.
11. (a) Use the Gram-Schmidt process to make

$$
\mathcal{B}=\{(1,-1),(2,3)\}
$$

into an orthogonal basis of \mathbb{R}^{2}.
(b) Find the least squares solution to $A \vec{x}=\vec{b}$ where

$$
A=\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & -1 & -1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right) \quad \vec{b}=\left(\begin{array}{c}
1 \\
2 \\
-1 \\
7
\end{array}\right)
$$

12. For each statement, mark it true or false. If it is false give a (counter)example. If it is true give a reason - if the reason is a theorem, state the theorem, otherwise give a brief proof. No credit for answers without a correct reason or example. Unless explicitly stated, no assumptions are made on the dimensions of the matrices.
(a) If A has n different eigenvectors, then A is diagonalisable.
(b) If $A P=P D$, where D is diagonal, then the columns of P are eigenvectors of A.
(c) If λ is an eigenvalue of A then λ^{100} is an eigenvalue of A^{100}.
(d) An orthogonal matrix has orthonormal rows.
(e) If $A B$ is invertible and A and B are square then A is invertible.
(f) If \vec{x}_{0} is the least squares solution to $A \vec{x}=\vec{b}$ then $\vec{b}_{0}=A \vec{x}_{0}$ is the closest vector in $\operatorname{Col}(A)$ to \vec{b}.
13. (a) Suppose

$$
A^{-1}=\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 2 \\
2 & 3 & 3
\end{array}\right)
$$

Solve $A \vec{x}=\vec{b}$.
(b) Define eigenvalue.
(c) Suppose that $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is the linear function that reflects across the x_{1}-axis and then in the line $x_{1}=x_{2}$. Find the matrix associated to f.
14. Find the general solution to

$$
\begin{aligned}
x_{1}+5 x_{3}+6 x_{4} & =6 \\
x_{1}+x_{2}+2 x_{4} & =1 \\
3 x_{1}+2 x_{2}+6 x_{3}+11 x_{4} & =11 .
\end{aligned}
$$

15. A linear function $f: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$ is defined by

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+2 x_{2}+x_{3}, x_{2}-x_{3}, x_{1}+3 x_{2}, x_{3}+x_{4}\right) .
$$

(a) Find the standard matrix for f.
(b) Find a basis for the nullspace of f.
16. For

$$
A=\left(\begin{array}{ccccc}
2 & 2 & 4 & 5 & 0 \\
0 & 2 & 2 & 1 & 3 \\
1 & 1 & 3 & 4 & 2 \\
5 & 5 & 11 & 14 & 2
\end{array}\right)
$$

find the following.
(a) rank of A.
(b) a basis for the row space of A.
(c) a basis for all $\vec{b} \in \mathbb{R}^{4}$ for which $A \vec{x}=\vec{b}$ has a solution.
17. If the eigenvalues of A are 1,2 and 3 what are the eigenvalues of A^{-1} ? Give a brief reason for your answer.
18. For each statement, mark it True or False. If true, give a brief reason. If false, explain or give a counterexample. No credit if reason is wrong.
(a) If A and B are two 2×2 matrices, with A invertible and if $A B=0$, then $B=0$.
(b) If A is a 2×2 matrix which is diagonalisable, then A is symmetric.
(c) If the eigenvalues of a 3×3 matrix are 0,1 and 2 , then A is diagonalisable.
(d) Suppose that A and B are two square matrices, and B is obtained from A by row operations. Then every eigenvalue of A is an eigenvalue of B.
19. Let V be the plane in \mathbb{R}^{4} spanned by the vectors $(2,0,1,1)$ and $(1,1,0,2)$. Find the vector in V closest to $\vec{y}=(3,1,5,1)$.
20. Determine if the set of vectors in \mathbb{R}^{4},

$$
\left\{\left(\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right) \quad\left(\begin{array}{l}
2 \\
1 \\
3 \\
1
\end{array}\right) \quad\left(\begin{array}{l}
4 \\
0 \\
1 \\
2
\end{array}\right) \quad\left(\begin{array}{c}
-1 \\
2 \\
1 \\
0
\end{array}\right)\right\}
$$

is linearly independent.
21. Suppose that you know the determinant of the matrix

$$
A=\left(\begin{array}{ccc}
1 & a & 2 \\
3 & b & 5 \\
-1 & c & -3
\end{array}\right)
$$

is 3 and $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ is a vector for which

$$
A \vec{x}=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)
$$

Find x_{2}.
22. True or false? $(+1 \mathrm{pt}$ for correct answer, -1 pt for incorrect answer $)$.
(a) If A is any matrix the system $A \vec{x}=\overrightarrow{0}$ must have at least one solution.
(b) If a square matrix is diagonalisable then its rows must be linearly independent.
(c) If V is a vector space and there is no set of n vectors which spans V then $\operatorname{dim}(V)>n$.
(d) If there is a linearly dependent set

$$
\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}
$$

of vectors in V, then $\operatorname{dim}(V)<4$.
(e) the function $f\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}+1\right)$ is a linear function from \mathbb{R}^{2} onto \mathbb{R}^{2}.
(f) If A and B are two square matrices which are similar to each other, then they must have the same eigenvalues.
(g) If A and B are two square matrices which are similar to each other, then they must have the same eigenvectors.
(h) If A is a square matrix and 0 is an eigenvalue of $A-2 I$ then 2 is an eigenvalue of A.
(i) There is a linear function from \mathbb{R}^{3} onto \mathbb{R}^{4}.
23. Give examples of 2×2 matrices A and B with the same characteristic polynomial but A is diagonalisable and B is not.
24. In this problem A is a square matrix. Give a very brief answer for each question.
(a) If A is not invertible, what number must be an eigenvalue of A ?
(b) If $\operatorname{dim} \operatorname{Nul}(A)=1$, what is the rank of A ?
(c) If A is invertible what is the row reduced echelon form of A ?
(d) If A is not invertible, find $\operatorname{det} A$.
(e) If $A^{2}=0$, show that A is not invertible.
25. If

$$
\begin{gathered}
\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\} \\
5
\end{gathered}
$$

is a linearly independent set of vectors in a vector space and \vec{v}_{4} is a vector in V which is not in the span of

$$
\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\},
$$

show (carefully) that

$$
\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}
$$

is a linearly independent set.
26. Find all eigenvalues and eigenvectors of

$$
\left(\begin{array}{cc}
9 & -2 \\
2 & 5
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
6 & -2 & 0 \\
-2 & 9 & 0 \\
5 & 8 & 3
\end{array}\right)
$$

27. The matrix

$$
A=\left(\begin{array}{ccc}
2 & -1 & -1 \\
1 & 4 & 1 \\
-1 & -1 & 2
\end{array}\right)
$$

has one eigenvalue equal to -2 . Diagonalise A.
28. Let

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Find a 3×3 diagonal matrix D and a 3×3 matrix orthogonal matrix U such that $A=U D U^{-1}$. Compute A^{10}.
29. Let $\vec{u}=(-1,0,1,1)$ and $\vec{v}=(1,-1,-2,0)$. Compute the length of \vec{u} and \vec{v}.
30. Let $\vec{u}_{1}=(-1,3,1,1), \vec{u}_{2}=(6,-8,-2,-4)$ and $\vec{u}_{3}=(6,3,6,-3)$. Let

$$
W=\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}
$$

and let $\vec{y}=(1,0,0,1)$.
(a) Find an orthogonal basis of W.
(b) Find the orthogonal projection $\mathbb{P}\left({ }_{W} \vec{y}\right)$
(c) Find the distance from \vec{y} to W.
(d) Decompose the vector \vec{y} as follows: $\vec{y}=\vec{y}_{0}+\vec{y}_{1}$, where $\vec{y}_{0} \in W$ and \vec{y}_{1} is orthogonal to W.
31. Let

$$
A=\left(\begin{array}{cc}
1 & -1 \\
1 & 2 \\
-1 & 1
\end{array}\right) \quad \text { and } \quad \vec{b}=\left(\begin{array}{c}
4 \\
0 \\
-2
\end{array}\right)
$$

(a) Find the orthogonal projection of \vec{b} onto $\operatorname{Col}(A)$.
(b) Find the least squares solution \vec{x}_{0} such that

$$
\left\|\vec{b}-A \vec{x}_{0}\right\| \leq\|\vec{b}-A \vec{x}\|_{6} \quad \text { for all } \quad \vec{x} \in \mathbb{R}^{3}
$$

(c) Find a basis for the orthogonal complement $\operatorname{Col}(A)^{\perp}$.
32. Let

$$
\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}
$$

be three non-zero pairwise orthogonal vectors in \mathbb{R}^{4}. Prove that

$$
\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}
$$

is a linearly independent set.
33. Let W be the subspace spanned by $\vec{u}_{1}=(1,-4,0,1)$ and $\vec{u}_{2}=$ $(7,-7,-4,1)$. Find an orthogonal basis for W by performing the GramSchmidt process to these vectors. Find a basis for W^{\perp}.
34. True or false:
(a) If the matrices A and B are similar, that is, $A=P B P^{-1}$ for some invertible matrix P, then A and B have the same set of eigenvalues.
(b) Let \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3} be three vectors in \mathbb{R}^{3}. Then they are linearly independent if and only if they are pairwise orthogonal.
(c) If $\operatorname{det} A=0$ then 0 is an eigenvalue of A.
(d) The nullspace of an $m \times n$ matrix A consists of all vectors in \mathbb{R}^{n} that are orthogonal to any vectors in the column space of A.
(e) Let B be a 6×8 matrix with $\operatorname{dim} \operatorname{Nul}(B)=3$. Then $\operatorname{rank}(B)=3$.
(f) A is diagonalisable if $A=P D P^{-1}$ for some matrix D and some invertible matrix P.
(g) Any invertible matrix is diagonalisable.
(h) Any upper triangular square matrix is diagonalisable.
(i) The inverse of a diagonalisable matrix is diagonalisable.
(j) An orthogonal matrix is orthogonally diagonalisable.
(k) Any three different eigenvectors of a matrix A corresponding to three different eigenvalues must be linearly independent.
(l) If λ is an eigenvalue of A then λ^{2} is an eigenvalue of A^{2}.
(m) If the columns of A are linearly independent, the equation $A \vec{x}=\vec{b}$ has exactly one least squares solution.
(n) If a square matrix has orthonormal columns then it has orthonormal rows.
(o) If a set

$$
S=\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}\right\}
$$

has the property that $\vec{u}_{i} \cdot \vec{u}_{j}=0$ whenever $i \neq j$, then S is an orthonormal set.
(p) If A is a symmetric matrix and $A \vec{x}=2 \vec{x}, A \vec{y}=3 \vec{y}$ then $\vec{x} \cdot \vec{y}=0$.
35. True or false:
(a) The row space of A is the column space of A^{T}.
(b) The inverse of an invertible $n \times n$ matrix A can be found by row reducing the augmented matrix $\left[A \mid I_{n}\right]$.
(c) If \mathcal{B} and \mathcal{C} are two bases of a vector space V then \mathcal{B} and \mathcal{C} have the same number of elements.
(d) Two vectors \vec{u} and \vec{v} in \mathbb{R}^{n} are orthogonal if and only if their dot product is greater than or equal to $\overrightarrow{0}$.
(e) If \mathcal{B} is a basis of a vector space V and \mathcal{C} is a basis for a linear subspace then each vector in \mathcal{C} can be written as a linear combination of the vectors in \mathcal{B}.
(f) The area of the parallelogram with vertices $(0,0),(1,0),(2,3)$ and $(3,3)$ is 9 .
(g) If $m<n$ then the columns of an $m \times n$ matrix A could span \mathbb{R}^{n}.
(h) If A and B are row equivalent then $\operatorname{Row}(A)=\operatorname{Row}(B)$.
(i) If the second column of a matrix is a pivot column then x_{2} is not a free variable.
(j) The determinant of a matrix is equal to the determinant of its transpose.
(k) A matrix with n distinct eigenvalues is diagonalisable.
(l) If A and B are row equivalent matrices then A and B have the same column space.
(m) A linearly independent set of vectors in \mathbb{R}^{n} containing n vectors is a basis of \mathbb{R}^{n}.
(n) A set of more than n vectors in \mathbb{R}^{n} that spans \mathbb{R}^{n} is a basis of \mathbb{R}^{n}.
(o) A set of vectors in \mathbb{R}^{n} that spans \mathbb{R}^{n} contains a basis of \mathbb{R}^{n}.
(p) If V is a k-dimensional vector space and S is a set of $k+1$ vectors in V then S contains a basis of V.
(q) The Gram-Schmidt algorithm returns an orthogonal basis for a given subspace.
(r) If $\operatorname{det}(A)=d$ then $\operatorname{det}(k A)=k^{n} d$.
(s) If A is a 4×4 matrix and the null space of A is a plane in \mathbb{R}^{4} then the column space of A has a basis with two elements.
(t) If \vec{v} is a non-zero vector in V then

$$
\frac{\vec{v}}{\|\vec{v}\|}
$$

is a unit vector in the direction of \vec{v}.
36. Let

$$
A=\left(\begin{array}{ccc}
5 & -1 & 1 / 2 \\
4 & 1 & 1 \\
0 & 0 & 3
\end{array}\right)
$$

(a) Calculate $\operatorname{det}(A)$.
(b) Find A^{-1}.
(c) Determine the span of the columns of A.
(d) Find the characteristic polynomial of A.
(e) Find the eigenvalue(s) of A.
(f) For each eigenvalue λ you found in part (e) find a basis for the associated eigenspace E_{λ}.
(g) If possible, find a matrix P and a diagonal matrix D such that $P^{-1} A P=D$. If not possible, explain why not.
37. Let

$$
B=\left(\begin{array}{cccccc}
1 & 2 & -3 & -4 & 5 & 6 \\
0 & 3 & -4 & 1 & 9 & 10 \\
0 & 2 & -1 & 0 & 8 & -2 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 4 & 0 & 0 & 8 & -3 \\
0 & 3 & 0 & 0 & -4 & 2
\end{array}\right)
$$

(a) Calculate the determinant of B by choosing clever rows and columns along which to expand.
(b) What is the dimension of the row space of B ? Justify your answer.
(c) What is the dimension of the column space of B ? Justify your answer.
38. Please prove two of the following. Indicate clearly which two you would like graded.
(a) Assuming that A is an invertible $n \times n$ matrix, show that the homogeneous equation $A \vec{x}=\overrightarrow{0}$ has only the trivial solution without appealing to the Invertible Matrix Theorem. Then show that $A \vec{x}=\vec{b}$ has a solution for every $\vec{b} \in \mathbb{R}^{n}$.
(b) If V is a vector space and $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are vectors in V prove that

$$
\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}
$$

is a linear subspace of V.
(c) Let A be an $m \times n$ matrix. Prove that every vector in $\operatorname{Nul}(A)$ is in the orthogonal complement of $\operatorname{Row}(A)$.

