HOMEWORK \#1, DUE WEDNESDAY OCTOBER 9TH

1. Show that the function

$$
f(x)= \begin{cases}\exp \left(-\frac{1}{x^{2}}\right) & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}
$$

is infinitely differentiable and that $f^{(k)}(0)=0$ for every k. Thus f is not analytic.
2. Show that the function

$$
g(x)= \begin{cases}\exp \left(-\frac{1}{x^{2}}\right) & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{cases}
$$

is infinitely differentiable.
3. Consider the function

$$
f(z)= \begin{cases}\frac{x y^{2}(x+i y)}{x^{2}+y^{4}} & z \neq 0 \\ 0 & z=0 .\end{cases}
$$

Show that the real and imaginary parts satisfy the Cauchy-Riemann equations at $z=0$, but that f is not analytic. (Hint: consider what happens as z approaches 0 along any line. Now consider what happens along an appropriate family of conics). Explain why this does not contradict the proposition proved in class.
4. If $f(z)$ and $g(z)$ are holomorphic, then prove that $f(g(z))$ is holomorphic.
5. For which values of a, b, c and d is the function $a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$ harmonic? Find the harmonic conjugate in this case.

