HOMEWORK \#5, DUE WEDNESDAY NOVEMBER 5 TH

1. Find a conformal map that carries the region common to $|z|<1$ and $|z-1|<1$ to the interior of the unit disc, in such a way that both symmetries are preserved.
2. Compute
(i)

$$
\int_{\gamma} x d z
$$

where γ is the directed line segment from 0 to $1+i$.
(ii)

$$
\int_{\gamma} x d z
$$

where γ is the circle of radius r, centre the origin, in two ways. First parametrically and secondly using the identity $x=\frac{1}{2}(z+\bar{z})=\frac{1}{2}\left(z+\frac{r^{2}}{z}\right)$, valid on the circle.
(iii)

$$
\int_{\gamma} \frac{d z}{z^{2}-1}
$$

where γ is the circle of radius 2 , centre the origin. (iv)

$$
\int_{\gamma} \frac{e^{z}}{z^{2}-1} d z
$$

where γ is the circle of radius 2 , centre the origin.
(v)

$$
\int_{\gamma} e^{z} z^{-n} d z
$$

where γ is the circle of radius 1 , centre the origin. (vi)

$$
\int_{\gamma} z^{n}(1-z)^{-m} d z
$$

where γ is the circle of radius 2 , centre the origin.

