HOMEWORK \#8, DUE WEDNESDAY DECEMBER 10TH

1. Show that the Laurent series for the function

$$
\frac{1}{e^{z}-1}
$$

at the origin has the form

$$
\frac{1}{z}-\frac{1}{2}+\sum_{k=1}^{\infty}(-1)^{k-1} \frac{B_{k}}{(2 k)!} z^{2 k-1}
$$

Calculate B_{1}, B_{2} and B_{3}.
2. Find expressions for the Taylor series of $\tan z$ and the Laurent series of $\cot z$ in terms of the Bernoulli numbers B_{1}, B_{2}, \ldots.
3. Comparing coefficients in the Laurent developments of $\cot \pi z$ and of its expression as a sum of partial fractions, find the values of

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}, \quad \sum_{n=1}^{\infty} \frac{1}{n^{4}} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{1}{n^{6}} .
$$

4. Express

$$
\sum_{n=-\infty}^{\infty} \frac{1}{z^{3}-n^{3}}
$$

in closed form.
Postponed:
5. Show that

$$
\prod_{n=2}^{\infty}\left(1-\frac{1}{n^{2}}\right)=\frac{1}{2}
$$

6. What is the genus of $\cos \sqrt{z}$?
