
HOMEWORK #8, DUE WEDNESDAY DECEMBER
10TH

1. Show that the Laurent series for the function
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at the origin has the form

1

z
− 1

2
+
∞∑
k=1

(−1)k−1
Bk

(2k)!
z2k−1.

Calculate B1, B2 and B3.
2. Find expressions for the Taylor series of tan z and the Laurent series
of cot z in terms of the Bernoulli numbers B1, B2, . . ..
3. Comparing coefficients in the Laurent developments of cotπz and
of its expression as a sum of partial fractions, find the values of
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,
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.

4. Express
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in closed form.
Postponed:
5. Show that
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)
=
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.

6. What is the genus of cos
√
z?
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