
12. Complex Integration

First some basic definitions:

Definition 12.1. Let X be a topological space. A curve in X is a
continuous function γ : [a, b] −→ X.

There are obvious notions attached to this definition; the image (aka
trace), endpoints, writing a curve as a sum (aka composing paths),

γ = γ1 + γ2 + γ3 + · · ·+ γk,

the reversed curve, parametrisation, all of which are left to the reader
to devise.

Definition 12.2. Let U be a region inside C. A curve γ is said to
be piecewise differentiable if there are finitely many differentiable
curves γi, such that γ is the sum of the γi.

Definition 12.3. Let γ be a piecewise differentiable curve and let f be
a continuous function, defined on a region U , containing the image of
γ. The integral of γ, written ∫

f dγ,

is defined as ∫ b

a

f (γ(t)) γ′(t) dt.

We use other obvious notation for this integral. For example,∫
γ

f(z) dz.

The integral is linear, both in f and in γ. Note that the integral is
invariant under reparametrisation of γ.

Definition 12.4. Let γ : [a, b] −→ U be a piecewise differentiable curve.
The length L(γ) of γ is defined to be∫ b

a

|γ′(t)| dt.

Lemma 12.5. Let γ be a piecewise differentiable curve and let f be a
continuous function, defined on a region U , containing the image of γ.
Let M = max |f(z)|, where the maximum is taken over the image of γ.

Then ∣∣∣∣∫ f dγ

∣∣∣∣ ≤ML(γ).
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Proof. Clear, as∣∣∣∣∫ f dγ

∣∣∣∣ ≤ ∫ |f(t)| · |γ′(t)| dt ≤
∫
M |γ′(t)|dγ = ML(γ). �

Example 12.6. Let z0 and z1 be two points of C. The line segment
z0z1 is the curve γ : [0, 1] −→ C given as

γ(t) = z0 + t(z1 − z0).

Then the length of γ is |z1 − z0|.
Let z0 ∈ C. The circle with centre z0 and radius ρ is the curve

γ : [0, 1] −→ C given as

γ(t) = z0 + ρe2πit.

Then the length of γ is 2πρ.
Finally suppose we have a rectangle, a ≤ Re z ≤ b, c ≤ Im z ≤ d.

Parametrise the boundary into four straight line segments, starting at
the bottom left and going around the boundary anti-clockwise. Clearly
the length is 2(b− a) + 2(d− c).

Proposition 12.7. Let f be a C1-function defined on a region U that
contains a rectangle R.

Then ∫∫
R

∂f

∂z̄
dx dy =

1

2i

∫
∂R

f dz.

Proof. We first replace the integrand by

∂f

∂y
and

∂f

∂x

and calculate each part separately:∫∫
R

∂f

∂y
dx dy =

∫ b

a

dx

∫ d

c

∂f

∂y
dy

=

∫ b

a

f(x, d)− f(x, c) dx

= −
(∫

γ1+γ3

f dz

)
.

2



Similarly ∫∫
R

∂f

∂x
dx dy =

∫ d

c

dy

∫ b

a

∂f

∂x
dx

=

∫ d

c

f(b, y)− f(a, y) dy

=
1

i

(∫
γ2+γ4

f dz

)
.

To get from the second line to the third line we used the fact that

dz = idy since on γ2 (respectively γ4) z = b+ iy (z = d+ iy).

As
∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
,

the result follows easily. �

Theorem 12.8. (Cauchy’s Formula) Let f be a holomorphic function
defined on a region U that contains a rectangle R.

Then ∫
∂R

f(z) dz = 0.

Proof. Note that we cannot apply (12.7), since we don’t know that f
is C1.

It is enough to prove this result in the case when the ratio of the
sides of the rectangle is a rational number, since every rectangle is a
limit of its interior rectangles.

First we divide the rectangle up into a grid of small squares, R1, R2, . . . , Rm.
Then ∫

∂R

f(z) dz =
∑
i

∫
∂Ri

f(z) dz.

In fact for each interior side, there are two squares that border this
side, and the integrals over those squares will traverse that side in
opposite directions. In this way the integrals cancel and we are left
with the integral over the boundary.

As f is differentiable, for every point z0 and for every ε > 0, there is
a δ > 0 such that ∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ε

for all

|z − z0| < δ.
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Suppose that we could find a subdivision such that for every square
of the subdivision, there is a point z0 belonging to the square, such
that the open ball of radius δ completely contains the square. Then
for every square of the subdivision, we have

f(z) = f(z0) + f ′(z0)(z − z0) + φ(z)

where

|φ(z)| ≤ ε|z − z0|.

Now consider integrating this expression over a square. Since any
function of the form az + b is most certainly C1, by (12.7), the only
term that contributes is the φ(z) term. If the side of the square is l
then by (12.5) this term contributes at most

ε4
√

2l2.

The sum of the integrals over all the squares would then be at most

4
√

2ε(b− a)(d− c).

Therefore it suffices to check that we can find such a subdivision.
Suppose not. Suppose that we are given a subdivision. Then we further
subdivide as follows. We leave unchanged every square such that the
given inequality holds in the square. Otherwise we further subdivide
any square (say into four pieces).

Continuing in this way, we would find a sequence of nested squares
such that there is no point belonging to each such square for which the
inequality above holds. Since the squares are nested, we may pick a
point z0 in the intersection. For this point, there is a δ such that the
inequality above holds.

On the other hand, z0 belongs to each of these squares. As the
lengths of these squares is going to zero, one of these squares is entirely
contained in the open ball of radius δ, a contradiction. �

Lemma 12.9. If γ is a square with centre a then∫
γ

1

|z − a|
dz ≤ 8.
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Proof. We may assume that a = 0 in which case the vertices of the
square are (±l,±l). Let γ1 be the side from (−l,−l) to (l,−l). Then∫

γ

1

|z − a|
dz = 4

∫
γ1

1

|z − a|
dz

= 4

∫ l

−l

1√
x2 + l2

dx

≤ 4

∫ l

−l

1√
l2

dx

= 8. �

Proposition 12.10. Let U be a region that contains a rectangle R.
Let f(z) be a function that is holomorphic outside finitely many points
a1, a2, . . . , ak not on the boundary of the rectangle. In addition suppose
that

lim
z→ai

(z − ai)f(z) = 0

for every i.
Then ∫

∂R

f(z) dz = 0.

Proof. Breaking the rectangle up into smaller rectangles, we may sup-
pose that k = 1. Set a = a1. Subdividing the rectangle into nine
rectangles, in such a way that there is one small square that contains
a, and applying Cauchy’s Theorem to the rectangles that don’t contain
a, we may assume that R is a square whose sides are arbitrarily small.

Thus given ε > 0, we may assume that

|f(z)| ≤ ε

|z − a|
.

On the other hand by (12.9)∫
∂R

1

|z − a|
dz ≤ 8.

As ε is arbitrary, the result follows. �
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