
16. Zeroes and Poles Revisited

Definition-Lemma 16.1. Let f be a holomorphic function, defined
on a region U .

The order of vanishing of f at a ∈ U is the largest n such that

f i(a) = 0 for all i < n.

If f has order of vanishing n then we may write

f(z) = (z − a)ng(z),

where g(z) is holomorphic in a neighbourhood of a, and g(a) 6= 0.

Proof. As f is holomorphic it is analytic and so we may write

f(z) =
∑
m∈N

am(z − a)m

as a power series, valid in some neighbourhood of a. f i(a) = 0 implies
that ai = 0 so that

f(z) =
∑
m≥n

am(z − a)m = (z − a)n
∑
m∈N

am+n(z − a)m = (z − a)ng(z),

where

g(z) =
∑
m∈N

am+n(z − a)m

is a power series. It is easy to see that g has the same radius of con-
vergence as f so that g is analytic. But then g is holomorphic. �

Lemma 16.2. Let f(z) and g(z) be two holomorphic functions on U .
Suppose that there is a sequence of points a1, a2, . . ., with a limit point
a in U , such that f(ai) = g(ai).

Then f = g on U .

Proof. Looking at the difference of f and g, it suffices to prove that
any function f , which is zero on a set of points a1, a2, . . . in U , with an
accumulation point a in U , must be identically zero.

Suppose not. By (16.1) we may write f(z) = (z − a)ng(z), where
g(a) 6= 0. By continuity, there is an open neighbourhood V of a such
that g(z) 6= 0 on V . But then f(z) 6= 0, in V −{a}, a contradiction. �

Definition 16.3. Let U be a region, a a point of U and f a function
holomorphic on U − {a}.

We say that f(z) has a removable singularity at a if there is a
holomorphic function g(z) on U , such that f = g on U − {a}.
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Lemma 16.4. Let U be a region and let f be a holomorphic function
on U − {a}, where a ∈ U .
a is a removable singularity of f(z) if and only if

lim
z→a

(z − a)f(z) = 0.

Proof. One direction is clear. If f(z) has a removable singularity at a
then

lim
z→a

(z − a)f(z) = lim
z→a

(z − a)g(z) = 0.

For the other direction, pick a disc contained in U centred at a. Let
γ be the boundary of the disc. Define a function g(z) on the disc by
the formula

g(z) =
1

2πi

∫
γ

f(w)

w − z
dw.

By Cauchy’s Integral Formula, f = g outside a. Consider integrating
g around a small rectangle R in the disc.∫

∂R

g(z) dz =

∫
∂R

1

2πi

∫
γ

f(w)

w − z
dw dz

=

∫
γ

f(w)
1

2πi

∫
∂R

1

w − z
dz dw

= −n(∂R;w)

∫
γ

f(w) dw

= 0,

and so g is holomorphic by Morera’s Theorem. �

Theorem 16.5. Let f be a holomorphic function on a region U . Let
γ be a closed path in U . Suppose that n(γ;w) = 0 for all w ∈ C− U .

Then for every a ∈ U − γ,

n(γ; a)f(a) =
1

2πi

∫
γ

f(z)

z − a
dz.

Proof. Define a function φ : U × U −→ C as follows;

φ(z, w) =

{
f(z)−f(w)

z−w z 6= w

f ′(z) z = w.

Clearly φ is continuous and the function z −→ φ(z, w) is holomor-
phic, for any fixed w ∈ U , since z = w is a removable singularity.

Let

V = {w ∈ C− γ |n(γ;w) = 0 }.
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Then V is open and U ∪ V = C, by hypothesis. Look at the function

g(z) =

{∫
γ
φ(z, w) dw z ∈ U∫
γ
f(w)
w−z dw z ∈ V.

Observe that ∫
γ

f(w)

w − z
dw

is a holomorphic function. For example, one can expand

1

w − z
as a power series in z and integrate term by term. Or one argue as in
the proof of (16.4).

Note also that∫
γ

φ(z, w) dw =

∫
γ

f(z)− f(w)

z − w
dw

=

∫
γ

f(w)

w − z
dw − f(z)

∫
γ

1

w − z
dw

=

∫
γ

f(w)

w − z
dw − n(γ; z)f(z).

Thus ∫
γ

φ(z, w) dw

is holomorphic. If z ∈ U ∩ V then∫
γ

φ(z, w) dw =

∫
γ

f(w)

w − z
dw

since n(γ;w) = 0 by definition of V . Thus g(z) is a well-defined entire
function.

It suffices to prove that g(z) = 0. Consider what happens as z tends
to infinity. Then 1

|z−w| tends uniformly to zero as z tends to infinity,

where w is on γ. Thus g(z) tends to zero. As g is entire and bounded,
by Liouville it is constant and as it tends to zero, in fact it is zero. �

Definition 16.6. Let U be a region and let f be a function holomorphic
on U − {a}, where a ∈ U . Then a is called an isolated singularity
of f .

We say that f has a pole, of order n, at a, if

(z − a)nf(z)
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has a removable singularity at a, but (z − a)mf(z) does not, for any
m < n. If there is no such n then we say that f has an essential
singularity at a.

There are other ways to define a pole and to define the order:

Lemma 16.7. Let U be a region and let f be a function holomorphic
on U − {a}, where a ∈ U .
f has a pole at a if and only if limz→a f(z) = ∞. In this case the

order of the pole of f(z) at z = a is equal to the order of the zero of
g(z), where g(z) = 1

f(z)
.

Proof. If f has a pole of order n at a then we can find h holomorphic
such that

f(z) =
h(z)

(z − a)n
,

where h(z) 6= 0 and so

lim
z→a

f(z) = lim
z→a

h(z)

(z − a)n
=∞.

In this case

g(z) =
(z − a)n

h(z)

has a zero of order n.
Now suppose that

lim
z→a

f(z) =∞.

Then there is a neighbourhood of a where f is not zero. Thus g(z) is
holomorphic in a punctured neighbourhood of a. By assumption

lim
z→a

g(z) = 0,

so that g has a removable singularity. Thus g(z) = (z − a)nh(z) for
some holomorphic function h and so f has a pole at a. �

As usual we can extend the definition of zeroes and poles to the
extended complex plane. A zero of f(z) at z = ∞ is zero of g(z) =
f(1/z). A pole of f(z) at ∞ is a pole of g(z) = f(1/z), that is, a zero
of 1/g(z) = 1/(f(1/z)).

Definition 16.8. Let f be a holomorphic function, with isolated sin-
gularities on a region U .

We say that f is meromorphic on U if the singularities of f are
all poles.
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In a sense to be made precise later, a meromorphic function is a
holomorphic function U −→ P1.

More interestingly we can define the order of a function f(z) as a
real number α.

Lemma 16.9. Let f(z) be a meromorphic function with a pole at a.
Then the order of f is exactly equal to the largest real number α such

that the limit
lim
z→a
|f(z)||z − a|α

exists.

Proof. Suppose that the order of f at a is n. By definition of α then

α ≤ n.

Suppose that α < n. Then

lim
z→a
|f(z)||z − a|n = lim

z→a
(|f(z)||z − a|α) lim

z→a
|z − a|n−α = 0,

which contradicts the definition of the order. �

Lemma 16.10. Let f(z) be a meromorphic function on U , with a pole
of order n at a.

Then there is a series expansion for f(z), valid in a punctured neigh-
bourhood of z = a,

f(z) =
∑
k=−n

bk(z − a)k,

where b−n 6= 0.

Proof. Clear, applying Cauchy-Taylor to g(z) = (z − a)nf(z). �

Theorem 16.11 (Casorati-Weierstrass). Suppose that f is a holomor-
phic function on U − {a}, with an essential singularity at the point a
of the region U .

Then, for every w, δ > 0 and ε > 0, there are infinitely many points
z, such that |z − a| < δ and |f(z)− w| < ε.

Proof. Given w, δ and ε, it suffices to prove that there is one such point
z.

Suppose not. Consider

g(z) =
f(z)− w
z − a

.

Then limz→a g(z) = ∞. It follows, by (16.7), that g(z) has a pole at
z = a, say of order n. Then

g(z) =
h(z)

(z − a)n
,
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where h(z) is holomorphic in a neighbourhood of a. But then

f(z) =
h(z)

(z − a)n−1
+ w,

visibly meromorphic in a neighbourhood of a, a contradiction. �

In other words, in any neighbourhood of an essentially singularity, a
function gets arbitrarily close to any complex number.
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