16. ZEROES AND POLES REVISITED

Definition-Lemma 16.1. Let f be a holomorphic function, defined
on a region U.
The order of vanishing of f at a € U is the largest n such that

fi(a) =0 for alli < n.
If f has order of vanishing n then we may write

f(z) = (2= a)"g(2),
where g(z) is holomorphic in a neighbourhood of a, and g(a) # 0.

Proof. As f is holomorphic it is analytic and so we may write

1) =Y an(z —a)"

meN

as a power series, valid in some neighbourhood of a. f*(a) = 0 implies
that a; = 0 so that

F(2)=) an(z—a)" = (z=a)" Y aminlz — @)™ = (2 — a)"g(2),

m>n meN

where

9(2) = Z Amin (2 — a)™

is a power series. It is easy to see that g has the same radius of con-
vergence as f so that g is analytic. But then ¢ is holomorphic. O

Lemma 16.2. Let f(z) and g(z) be two holomorphic functions on U.
Suppose that there is a sequence of points aq, as, . .., with a limit point
a in U, such that f(a;) = g(a;).

Then f =g on U.

Proof. Looking at the difference of f and g, it suffices to prove that
any function f, which is zero on a set of points ay, as, ... in U, with an
accumulation point a in U, must be identically zero.

Suppose not. By we may write f(z) = (z — a)"g(z), where
g(a) # 0. By continuity, there is an open neighbourhood V' of a such
that g(z) # 0on V. But then f(z) # 0, in V —{a}, a contradiction. [

Definition 16.3. Let U be a region, a a point of U and f a function
holomorphic on U — {a}.
We say that f(z) has a removable singularity at a if there is a
holomorphic function g(z) on U, such that f = g on U — {a}.
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Lemma 16.4. Let U be a region and let f be a holomorphic function
on U —{a}, wherea € U.
a is a removable singularity of f(z) if and only if

lim(z —a)f(z) = 0.

zZ—a

Proof. One direction is clear. If f(z) has a removable singularity at a
then

lim(z —a)f(z) = lim(z — a)g(z) = 0.

z—a z—a

For the other direction, pick a disc contained in U centred at a. Let
v be the boundary of the disc. Define a function g(z) on the disc by

the formula
L[ flw)
= — [ —~ dw.
9(2) 27 /Ww—z v

By Cauchy’s Integral Formula, f = g outside a. Consider integrating
g around a small rectangle R in the disc.

/aRg(z)dz:/aR%/V%dwdz
:/Vf(w)%/(mwl_zdzdw

n(OR; w) / f(w) du

=0,
and so ¢ is holomorphic by Morera’s Theorem. U

Theorem 16.5. Let f be a holomorphic function on a region U. Let
v be a closed path in U. Suppose that n(vy;w) =0 for allw € C—U.
Then for every a € U — 7,

nia)fla) = o [T g

Proof. Define a function ¢: U x U — C as follows;

FAZIW) Ly,
oz, w) = {f’(z) Z = w.

Clearly ¢ is continuous and the function z — ¢(z,w) is holomor-
phic, for any fixed w € U, since z = w is a removable singularity.
Let

V:{wEC—Zﬂn(y;w):O}.



Then V is open and U UV = C, by hypothesis. Look at the function

f7¢(z,w)dw 2eU
g(z):{ F0) o zeV.

yw—z

/f@ﬁdw

is a holomorphic function. For example, one can expand
1

w—z

Observe that

as a power series in z and integrate term by term. Or one argue as in

the proof of ((16.4)).

Note also that

l¢@ﬂ@dw:i/iEL:i@de

Z—Ww

zg@&mﬂﬁlwi/m

- [4 ) 4w — n(y; 2) ().

w—z
Thus
/ o(z,w) dw
”
is holomorphic. If z € U NV then

/yqb(z,w)dw:/W%dw

since n(v;w) = 0 by definition of V. Thus ¢(z) is a well-defined entire
function.

It suffices to prove that g(z) = 0. Consider what happens as z tends
to infinity. Then m tends uniformly to zero as z tends to infinity,
where w is on v. Thus g(z) tends to zero. As g is entire and bounded,
by Liouville it is constant and as it tends to zero, in fact it is zero. [

Definition 16.6. Let U be a region and let | be a function holomorphic
on U —{a}, where a € U. Then a is called an isolated singularity
of f.
We say that f has a pole, of order n, at a, if
(z—a)"f(2)
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has a removable singularity at a, but (z — a)™f(z) does not, for any
m < n. If there is no such n then we say that f has an essential
singularity at a.

There are other ways to define a pole and to define the order:

Lemma 16.7. Let U be a region and let f be a function holomorphic
on U —{a}, wherea € U.

f has a pole at a if and only if lim,_,, f(z) = co. In this case the
order of the pole of f(z) al z = a is equal to the order of the zero of
g(z), where g(z) = ﬁ
Proof. If f has a pole of order n at a then we can find A holomorphic
such that

where h(z) # 0 and so

lim f(z) = lim hz)

z—a z—a (Z — a)”

In this case

(z—a)"
9(z) = 8
has a zero of order n.
Now suppose that
lim f(z) = oo.

Then there is a neighbourhood of a where f is not zero. Thus g(z) is
holomorphic in a punctured neighbourhood of a. By assumption

lim g(z) = 0,

z—a

so that g has a removable singularity. Thus g(z) = (z — a)"h(z) for
some holomorphic function A and so f has a pole at a. O

As usual we can extend the definition of zeroes and poles to the
extended complex plane. A zero of f(z) at z = oo is zero of g(z) =
f(1/2). A pole of f(z) at 0o is a pole of g(z) = f(1/z), that is, a zero

of 1/9(2) = 1/(f(1/2)).

Definition 16.8. Let f be a holomorphic function, with isolated sin-
gularities on a region U.
We say that [ is meromorphic on U if the singularities of f are

all poles.
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In a sense to be made precise later, a meromorphic function is a
holomorphic function U — P*.

More interestingly we can define the order of a function f(z) as a
real number a.

Lemma 16.9. Let f(z) be a meromorphic function with a pole at a.
Then the order of f is exactly equal to the largest real number o such
that the limit

lim [ f(z)|]z — a|
zZ—ra
exists.
Proof. Suppose that the order of f at a is n. By definition of o then
a<n.
Suppose that a < n. Then
lim [f(2)[|z = a|* = lim([f(2)[|z — a|*) lim |z — a|*™* = 0,
zZ—a zZ—a zZ—ra
which contradicts the definition of the order. U

Lemma 16.10. Let f(z) be a meromorphic function on U, with a pole
of order n at a.
Then there is a series expansion for f(z), valid in a punctured neigh-

bourhood of z = a,
f(Z) = Z bk(’z - a)ka
k=—n
where b_,, # 0.

Proof. Clear, applying Cauchy-Taylor to ¢g(z) = (z — a)"f(2). O

Theorem 16.11 (Casorati-Weierstrass). Suppose that f is a holomor-
phic function on U — {a}, with an essential singularity at the point a
of the region U.

Then, for every w, 6 > 0 and € > 0, there are infinitely many points
z, such that |z —a| < § and |f(z) —w| < e.

Proof. Given w, § and e, it suffices to prove that there is one such point
z.
Suppose not. Consider
_ ) —w
9(z) = ————.
Then lim, ,, g(z) = co. It follows, by (16.7), that g(z) has a pole at
z = a, say of order n. Then



where h(z) is holomorphic in a neighbourhood of a. But then

h(z)
f(z) = G—a) T + w,
visibly meromorphic in a neighbourhood of a, a contradiction. 0

In other words, in any neighbourhood of an essentially singularity, a
function gets arbitrarily close to any complex number.
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