17. Counting Zeroes and the Open Mapping Theorem

Let \(f \) be a holomorphic function such that \(f(a) = b \). We say that the order of \(f \) at \(a \) is is the order of \(f - b \), that is, the largest \(n \) such that

\[
f^i(a) = 0 \quad \text{for all} \quad 0 < i < n.
\]

Theorem 17.1. Let \(f(z) \) be a non-constant holomorphic function on a disc \(\Delta \). Suppose that \(a \in \mathbb{C} \) and let \(z_1, z_2, \ldots \) be the complex numbers, with repetition according to the order, such that \(f(z) = a \). Then

\[
\sum_j n(\gamma, z_j) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z) - a} \, dz,
\]

where \(\gamma \) is any closed curve in \(\Delta \), not containing any of the points \(z_1, z_2, \ldots \) and where the sum has only finitely many terms.

Proof. Replacing \(f \) by \(f - a \) we may assume that \(a = 0 \), so that \(z_1, z_2, \ldots \) are the zeroes of \(f \).

Since the only accumulation points of \(z_1, z_2, \ldots \) are on the boundary of \(\Delta \), possibly replacing \(\Delta \) by a smaller disc we may assume that \(f \) has only finitely many zeroes in \(\Delta \). By definition of the order of a zero and an obvious induction, we may write

\[f(z) = (z - z_1)(z - z_2)(z - z_3) \cdots (z - z_k)g(z),\]

where, as pointed out above, we allow repetition. By assumption \(g(z) \) is a holomorphic function on \(\Delta \) with no zeroes \(z \) in \(\Delta \). We have

\[
\frac{f'(z)}{f(z)} = \frac{1}{z - z_1} + \frac{1}{z - z_2} + \cdots + \frac{1}{z - z_k} + \frac{g'(z)}{g(z)}.
\]

On the other hand

\[
\int_{\gamma} \frac{g'(z)}{g(z)} \, dz = 0,
\]

by Cauchy’s Theorem, since . The result follows by integrating both sides around \(\gamma \) and applying the definition of the winding number. \(\Box \)

The formula above reads more concisely as

Corollary 17.2.

\[n(\Gamma, a) = \sum n(\gamma, z_j).\]

Proof. Pick a parametrisation of

\[
\gamma: [c, d] \rightarrow \mathbb{C}.
\]

Then \(\Gamma \) has the parametrisation

\[
\Gamma: [c, d] \rightarrow \mathbb{C} \quad \text{given by} \quad \Gamma(t) = f(\gamma(t)).
\]
By definition of the path integral:
\[
\int_{\Gamma} \frac{1}{w-a} \, dw = \int_{c}^{d} \frac{\Gamma'(t)}{\Gamma(t)-a} \, dt \\
= \int_{c}^{d} \frac{f'(\gamma(t))\gamma'(t)}{f(\gamma(t))-a} \, dt \\
= \int_{\gamma} \frac{f'(z)}{f(z)-a} \, dz.
\]

Theorem 17.3. Let \(f \) be a function, holomorphic in a neighbourhood of \(z_0 \) and set \(w_0 = f(z_0) \).

If \(f(z) - w_0 \) has a zero of order \(n \) at \(z_0 \) then there is a \(\delta > 0 \) and an \(\epsilon > 0 \), such that for all \(0 < |a - w_0| < \epsilon \) the equation
\[
f(z) = a \quad \text{subject to} \quad |z - z_0| < \delta
\]
has \(n \) roots.

Proof. Note that \(f' \) is a holomorphic function, so that its zeroes are isolated. Pick \(\delta > 0 \) so that \(f(z) \) is holomorphic, \(f'(z) \) is only zero if \(z = z_0 \) and the equation
\[
f(z) = w_0,
\]
has only the root \(z = z_0 \), for \(|z - z_0| < \delta \). Let \(\gamma \) be the circle \(|z - z_0| = \delta \) and let \(\Gamma \) be the image of \(\gamma \). As \(w_0 \notin \Gamma \) and \(\Gamma \) is closed, we may find \(\epsilon > 0 \) so that \(|w - w_0| < \epsilon \) does not intersect \(\Gamma \).

Suppose that \(0 < |a - w_0| < \epsilon \). Then \(a \) and \(w_0 \) belong to the same connected component of \(\mathbb{C} - \Gamma \). Therefore
\[
n(\Gamma; a) = n(\Gamma; w_0).
\]

As \(f(z) - w_0 \) has a zero of order \(n \), (17.2) implies that the RHS is \(n \). As \(f'(z) \neq 0 \) for \(z \neq z_0 \), then the order of zero of any solution to \(f(z) = a \) is one. The result then follows by (17.2). \(\square \)

Definition 17.4. Let \(f : X \longrightarrow Y \) be a map of topological spaces. \(f \) is called **open** if the image of every open set is open.

Theorem 17.5. (Open Mapping Theorem) Every holomorphic map is open.

Proof. As every open subset is a union of open balls, it suffices to prove that the image of a sufficiently small open ball is a union of open balls. This follows from (17.3). \(\square \)

Corollary 17.6. Let \(f(z) \) be holomorphic at \(z = z_0 \) and suppose that \(f'(z_0) \neq 0 \).

Then \(f \) is a local homeomorphism and locally conformal.
Proof. By (17.3) \(f \) is locally a bijection. Since it is also open and continuous, it is automatically a homeomorphism.