18. The maximum principle

Theorem 18.1 (Maximum principle). If f(z) is holomorphic and non-constant on a region U then |f(z)| does not achieve its maximum on U.

Proof. Suppose that $f(z_0) = w_0$. Then there exists $\delta > 0$ and $\epsilon > 0$ such that for all $|z - z_0| < \delta$ and $|w - w_0| < \epsilon$, the equation

$$f(z) = w,$$

has at least one solution. Pick w such that $|w - w_0| < \epsilon$ and yet $|w| > |w_0|$. Pick z such that f(z) = w. Then $|f(z)| > |f(z_0)|$. Thus z_0 is not a maximum of |f|. As z_0 is arbitrary we are done.

There is another way to state this result.

Theorem 18.2 (Maximum principle: bis). If f(z) is defined on a closed and bounded set E and f is holomorphic on the interior, then |f| achieves its maximum on the boundary of E.

Proof. Since E is closed and bounded, it is compact. As f is continuous on E, it follows that |f| achieves it maximum somewhere on E. If f is constant there is nothing to prove. Otherwise by (18.1) this point is not a point of the interior of E.

Even though the maximum principle is an easy consequence of the open mapping Theorem, it is interesting to give a direct proof of this result.

Proof of (18.1). We give two proofs. Suppose that $z_0 \in U$ is a point where |f| achieves its maximum.

First proof: Pick a small circle γ about z_0 and apply Cauchy's Integral Formula

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} f(z) d\theta.$$

Taking absolute values, and noting that $|f(z)| \leq |f(z_0)|$, by (18.3) we see that $|f(z)| = |f(z_0)|$. It follows that |f(z)| is constant on the whole of U, so that f(z) is constant.

Second proof: As f is holomorphic, we may find a power series representation of f about z_0 ,

$$f(z) = \sum_{n} a_n (z - z_0)^n.$$

Let $z = z_0 + re^{i\theta}$. Then

$$f(z) = \sum_{n} a_n r^n e^{in\theta}.$$
$$|f(z)|^2 = f(z)\bar{f}(z) = \sum_{m} \bar{a}_m a_n r^{m+n} e^{i(n-m)\theta}.$$

Hence

$$\frac{1}{2\pi} \int_{\gamma} |f(z)|^2 dz = \frac{1}{2\pi} \sum_{m,n \in \mathbb{N}} \int_{0}^{2\pi} \bar{a}_m a_n r^{n+m} e^{i(n-m)\theta} d\theta$$
$$= \sum_{n,m \in \mathbb{N}} |a_n|^2 r^{2n}.$$

But the integral on the LHS is no more than $|a_0|^2$, by (18.3). It follows that $a_n = 0$, for all $n \ge 1$. Thus f is constant.

Lemma 18.3. Let $\phi(x)$ be a continuous function such that $\phi(x) \leq k$. Then

$$\frac{1}{b-a} \int_{a}^{b} \phi(x) \, \mathrm{d}x \le k,$$

with equality if and only if $\phi(x) = k$.

Lemma 18.4. Let u be a non-constant harmonic function defined on a region U.

Then u does not achieve its maximum on U.

Proof. Note that if u is not constant then it is not locally constant. So it is enough to prove this locally. Thus we may assume that u has a harmonic conjugate v, so that u is the real part of a holomorphic function f. Then e^f is holomorphic and $|e^f| = |e^u|$.

Lemma 18.5 (Schwarz's Lemma). Let f be a holomorphic function from the interior of the unit disc to the unit disc.

If f(0) = 0, then $|f(z)| \le |z|$ and $|f'(0)| \le 1$. Furthermore if either |f'(0)| = 1 of |f(z)| = |z| for some $z \ne 0$ then f(z) = cz, for some constant c, of absolute value one.

Proof. Note that

$$g(z) = \begin{cases} \frac{f(z)}{z} & z \neq 0\\ f'(0) & z = 0. \end{cases}$$

has a removable singularity at 0. Thus we may apply the maximum principle to g(z).

On a circle of radius r, $|g(z)| \le 1/r$. Thus $|g(z)| \le 1/r$ on the circle $|z| \le r$ by the maximum principle. Letting r tend to one, we see that $|g(z)| \le 1$. By the maximum principle |g(z)| < 1 for all z unless it is constant and this gives the result.