18. The maximum principle

Theorem 18.1 (Maximum principle). If \(f(z) \) is holomorphic and non-constant on a region \(U \) then \(|f(z)| \) does not achieve its maximum on \(U \).

Proof. Suppose that \(f(z_0) = w_0 \). Then there exists \(\delta > 0 \) and \(\epsilon > 0 \) such that for all \(|z - z_0| < \delta \) and \(|w - w_0| < \epsilon \), the equation

\[
f(z) = w,
\]

has at least one solution. Pick \(w \) such that \(|w - w_0| < \epsilon \) and yet \(|w| > |w_0| \). Pick \(z \) such that \(f(z) = w \). Then \(|f(z)| > |f(z_0)| \). Thus \(z_0 \) is not a maximum of \(|f| \). As \(z_0 \) is arbitrary we are done. \(\square \)

There is another way to state this result.

Theorem 18.2 (Maximum principle: bis). If \(f(z) \) is defined on a closed and bounded set \(E \) and \(f \) is holomorphic on the interior, then \(|f| \) achieves its maximum on the boundary of \(E \).

Proof. Since \(E \) is closed and bounded, it is compact. As \(f \) is continuous on \(E \), it follows that \(|f| \) achieves its maximum somewhere on \(E \). If \(f \) is constant there is nothing to prove. Otherwise by (18.1) this point is not a maximum of \(|f| \). As \(z_0 \) is arbitrary we are done. \(\square \)

Even though the maximum principle is an easy consequence of the open mapping Theorem, it is interesting to give a direct proof of this result.

Proof of (18.1). We give two proofs. Suppose that \(z_0 \in U \) is a point where \(|f| \) achieves its maximum.

First proof: Pick a small circle \(\gamma \) about \(z_0 \) and apply Cauchy’s Integral Formula

\[
f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} \, dz
= \frac{1}{2\pi} \int_0^{2\pi} f(z) \, d\theta.
\]

Taking absolute values, and noting that \(|f(z)| \leq |f(z_0)| \), by (18.3) we see that \(|f(z)| = |f(z_0)| \). It follows that \(|f(z)| \) is constant on the whole of \(U \), so that \(f(z) \) is constant.

Second proof: As \(f \) is holomorphic, we may find a power series representation of \(f \) about \(z_0 \),

\[
f(z) = \sum_{n} a_n(z - z_0)^n.
\]
Let $z = z_0 + re^{i\theta}$. Then
\[f(z) = \sum_{n} a_n r^n e^{in\theta}. \]
\[|f(z)|^2 = f(z)\bar{f}(z) = \sum_{m,n \in \mathbb{N}} \bar{a}_m a_n r^{m+n} e^{i(n-m)\theta}. \]

Hence
\[\frac{1}{2\pi} \int_{\gamma} |f(z)|^2 \, dz = \frac{1}{2\pi} \sum_{m,n \in \mathbb{N}} \int_{0}^{2\pi} \bar{a}_m a_n r^{m+n} e^{i(n-m)\theta} \, d\theta \]
\[= \sum_{n,m \in \mathbb{N}} |a_n|^2 r^{2n}. \]

But the integral on the LHS is no more than $|a_0|^2$, by (18.3). It follows that $a_n = 0$, for all $n \geq 1$. Thus f is constant. \hfill \Box

Lemma 18.3. Let $\phi(x)$ be a continuous function such that $\phi(x) \leq k$. Then
\[\frac{1}{b-a} \int_{a}^{b} \phi(x) \, dx \leq k, \]
with equality if and only if $\phi(x) = k$.

Proof. Easy. \hfill \Box

Lemma 18.4. Let u be a non-constant harmonic function defined on a region U.

Then u does not achieve its maximum on U.

Proof. Note that if u is not constant then it is not locally constant. So it is enough to prove this locally. Thus we may assume that u has a harmonic conjugate v, so that u is the real part of a holomorphic function f. Then e^f is holomorphic and $|e^f| = |e^u|$. \hfill \Box

Lemma 18.5 (Schwarz’s Lemma). Let f be a holomorphic function from the interior of the unit disc to the unit disc.

If $f(0) = 0$, then $|f(z)| \leq |z|$ and $|f'(0)| \leq 1$. Furthermore if either $|f'(0)| = 1$ or $|f(z)| = |z|$ for some $z \neq 0$ then $f(z) = cz$, for some constant c, of absolute value one.

Proof. Note that
\[g(z) = \begin{cases} \frac{f(z)}{z} & z \neq 0 \\ f'(0) & z = 0. \end{cases} \]
has a removable singularity at 0. Thus we may apply the maximum principle to $g(z)$.
On a circle of radius r, $|g(z)| \leq 1/r$. Thus $|g(z)| \leq 1/r$ on the circle $|z| \leq r$ by the maximum principle. Letting r tend to one, we see that $|g(z)| \leq 1$. By the maximum principle $|g(z)| < 1$ for all z unless it is constant and this gives the result. □