
19. Residues

Let f be a holomorphic function with an isolated singularity at a.
Pick a small circle γ centred at a and consider the integral

P =

∫
γ

f(z) dz.

P is called a period of f . As the function f(z) = 1
z−a has period 2πi

the function

g(z) = f(z)− R

z − a
, where R =

P

2πi

has period zero, with respect to γ. It follows that g is the derivative of
some function.

Definition 19.1. Let f be a holomorphic function with an isolated
singularity at a. The residue of f at a is the unique complex number
R, so that the function

g(z) = f(z)− R

z − a
,

for some small 0 < |z − a| < δ, is the derivative of another function.

It is useful to employ the following notation for the residue,

R = Resz=a f(z).

Theorem 19.2 (Residue Theorem). Let U be a region and let f be a
holomorphic function on U − {a1, a2, . . .} with isolated singularities at
a1, a2, . . .. Let γ be a path in U that does not contain any of the points
a1, a2, . . . and such that the winding number around any point outside
U is zero.

Then
1

2πi

∫
γ

f dz =
∑
j

n(γ; aj) Resz=aj f(z).

Proof. Pick small circles γj, centred at aj, contained in U . Consider
the path γ′ = γ −

∑
n(γ; aj)γj. We want to apply Cauchy’s integral

formula to γ′. It suffices to check that the winding number of γ′ about
any complex number a ∈ C− (U − {a1, a2, . . . , ak}) is zero. Note that
the regions of C− γ′ are equal to the regions of C− γ, union the small
discs about each ai. By assumption the only non-zero winding numbers
for γ are about ai. By definition of γ′ the winding number of γ′ about
ai is zero. It follows that γ′ has zero winding number about any point
in a ∈ C− (U − {a1, a2, . . . , ak}).
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Thus by Cauchy’s integral formula∫
γ′
f(z) dz = 0.

Rearranging, we get ∫
γ

f(z) dz =
∑
j

n(γ; aj)Pj,

where

Pj =

∫
γj

f(z) dz.

The result follows by definition of Rj. �

Of course, (19.2) is useless without an effective means of computing
the residue:

Lemma 19.3. Suppose that f(z) has a pole of order one at a. Then

Resz=a f(z) = lim
z→a

(z − a)f(z).

Proof. By assumption

f(z) =
b−1
z − a

+ b0 + b1(z − a) + b2(z − a)2 + · · · = b−1
z − a

+ g(z),

where g(z) is a holomorphic function. By definition the residue is b−1.
Clearly b−1 = limz→a(z − a)f(z). �

One of the main uses of the residue Theorem is to compute contour
integrals. For example, consider computing the following integral:∫ ∞

0

1

1 + x2
dx.

Consider the following contour. Let γ be the closed path, that starts
at zero, goes along the real axis to R, describes a semi-circle of radius
R and then traverses the x-axis from −R to zero. Consider applying
the Residue Theorem to

f(z) =
1

1 + z2
.

f(z) has two isolated singularities at z = ±i. The winding number of γ
about the first is 1 and about the second is zero. The residue at z = i
can be computed in one of two ways.

For the first observe that
1

1 + z2
=

1

(z − i)(z + i)
=

−1

2i(z + i)
+

1

2i(z − i)
.

Thus the residue at z = i is by definition 1/2i.
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Alternatively multiply f by (z − i), to get

1

z + i
.

At z = i we get 1/2i.
Either way by the residue Theorem∫

γ

1

1 + z2
dz = π.

On the other hand the integral may by split into two parts. The
integral along the real-axis from −R to R and the integral along a
semi-circle. Along the semi-circle,

|f(z)| ≤ 1

R2 − 1

so that the integral along the semi-circle is at most

π
R

R2 − 1

which tends to zero as R tends to infinity.
As the function 1

1+x2
is even, it follows that the integral from −R to

R is twice the integral from 0 to R. Hence∫ ∞
0

1

1 + x2
dx =

π

2
.

Now consider the integral ∫ ∞
0

sinx

x
dx.

Consider the integral ∫
γ

eiz

z
dz,

where γ is the contour that starts at ρ goes along the x-axis to R,
goes around a semi-circle counterclockwise to −R, goes back to −ρ
and traverses a semi-circle, clockwise around the origin. The only pole
of the function

f(z) =
eiz

z
,

is at the origin and the winding number of γ about the origin is zero.
Thus by the residue Theorem, the integral of f(z) around γ is zero.
We split the integral into four pieces.∫ R

ρ

eix

x
dx+

∫
γ0

f(z) dz +

∫ −ρ
−R

eix

x
dx+

∫
γ1

f(z) dz.
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The two integrals along the x-axis, when combined, give∫ R

ρ

eix − e−ix

x
dx = 2i

∫ R

ρ

sinx

x
dx.

Consider the behaviour around the big semi-circle.∣∣∣∣∫
γ0

eiz

z
dz

∣∣∣∣ =

∣∣∣∣∫ π

0

eiRe
iθ

dθ

∣∣∣∣
≤
∫ π

0

e−R sin θ dθ

≤
∫ δ

0

dθ +

∫ π−δ

δ

e−R sin δ dθ +

∫ π

π−δ
dθ

≤ 2δ + πe−R sin δ.

As R tends to infinity, we may let δ approach zero. Thus the integral
goes to zero.

Now consider the behaviour around the small semi-circle.∫
γ

eiz

z
dz =

∫
γ

1

z
dz +

∫
γ

eiz − 1

z
dz.

There are two ways to see that the first integral goes to zero as ρ
goes to zero. Either use the Taylor series expansion of eiz. Or use the
fact that

eiz − 1

z
is the derivative of a holomorphic function.

On the other hand, by direct computation, the first integral comes
out as ∫

γ

1

z
dz =

∫ 0

π

i dθ = −πi.

Thus, letting R→∞ and ρ→ 0, we get

2i

∫ ∞
0

sinx

x
dx− πi = 0,

so that ∫ ∞
0

sinx

x
dx =

π

2
.

Finally consider ∫ π

0

log sin θ dθ.

Consider the function

1− e2iz = −2ieiz sin z.
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As
1− e2iz = 1− e−2y (cos 2x+ i sin 2x) ,

we see that this function takes on real negative values only if y < 0 and
x = nπ/2. So if we delete these half lines, we may assume that log is
single-valued and holomorphic.

We now integrate log(1−e2iz) along the rectangle with corners, 0, π,
π + iY and iY . At the points 0 and π we choose arcs of small quarter
circles, of radius δ, to avoid these points.

By periodicity, the integrals along the vertical sides cancel. The
integral along the top horizontal line goes to zero, as Y goes to infinity.

I claim that the same is true over the quarter circles. The imaginary
part of the logarithm is bounded, so we only need worry about the real
part. Now

|1− e2iz|
|z|

→ 2,

for z → 0 so that the logarithm behaves like log δ. As δ log δ tends to
zero, the integral tends to zero around the first quarter circle. Similarly
for the second quarter circle.

Thus ∫ π

0

log(−2ieix sinx) dx = 0.

Suppose we choose the standard branch of the logarithm. As x ranges
between 0 and π we have

log(eix) = ix and log(−i) = −πi/2.
Thus

π log 2− π2i/2 +

∫ π

0

log sinx dx+ π2/2i = 0.

and so ∫ π

0

log sinx dx = −π log 2.
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