20. The argument principle

Theorem 20.1 (Argument Principle). Let $f(z)$ be a meromorphic function on a region U, with zeroes a_{1}, a_{2}, \ldots and poles b_{1}, b_{2}, \ldots, repeated according to multiplicity.

Then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=\sum_{j} n\left(\gamma ; a_{j}\right)-\sum_{k} n\left(\gamma ; b_{k}\right),
$$

where γ is any cycle that has zero winding number about any point of $\mathbb{C}-U$ and which does not contain of the points a_{1}, a_{2}, \ldots and b_{1}, b_{2}, \ldots..

Proof. Suppose that $f(z)=(z-a)^{h} g(z)$, where $g(z)$ is holomorphic at a and $g(a) \neq 0$. Then

$$
f^{\prime}(z)=h(z-a)^{h-1} g(z)+(z-a)^{h} g^{\prime}(z)
$$

so that

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{h}{z-a}+\frac{g^{\prime}(z)}{g(z)} .
$$

Thus the residue at a is h. The result now follows by the Residue Theorem.

Note that the left hand side is the winding number of Γ about 0 , the composition of Γ with f.

Theorem 20.2 (Rouché's Theorem). Let γ be a closed path in a region U such that the winding number of γ about any point of $\mathbb{C}-U$ is zero. Suppose that $n(\gamma ; a)$ is zero 0 or 1 for any point a not on γ. Suppose that $f(z)$ and $g(z)$ are holomorphic on U and that

$$
|f(z)-g(z)|<|g(z)|,
$$

on γ.
Then $f(z)$ and $g(z)$ have the same number of zeroes in the region enclosed by γ.

Proof. By the inequality, both f and g have no zeroes on γ. Moreover

$$
\left|\frac{f(z)}{g(z)}-1\right|<1
$$

on γ. Thus $F(z)=f(z) / g(z)$ takes values in the disc with radius one and centre one. Thus if we apply (20.1) to $F(z)$, we see that $n(\Gamma ; 0)=0$, where Γ is the composition of γ and F. Hence $F(z)$ has the same number of zeroes and poles and this gives the result.

We can generalise the argument principle to the case of

$$
g(z) \frac{f^{\prime}(z)}{f(z)}
$$

where $g(z)$ is holomorphic on U and the zeroes or poles of f are disjoint from the zeroes of g. At a zero a of $f(z)$ of order h the residue is $h g(a)$ and at a pole of order h the residue is $-h g(a)$. Thus

$$
\frac{1}{2 \pi i} \int_{\gamma} g(z) \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=\sum_{j} n\left(\gamma ; a_{j}\right) g\left(a_{j}\right)-\sum_{k} n\left(\gamma ; b_{k}\right) g\left(b_{k}\right) .
$$

Now consider the problem of constructing the inverse of a function. Suppose that $f(z)$ has local valency n, meaning

$$
f(z)=w
$$

has n roots $z_{j}(w)$, for $0<\left|w-w_{0}\right|<\epsilon$ and $\left|z-z_{0}\right|<\delta$. Applying the result above with $g(z)=z$, we get

$$
\sum_{j=1}^{n} z_{j}(w)=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=\epsilon} \frac{f^{\prime}(z)}{f(z)-w} z \mathrm{~d} z
$$

Thus if $n=1$, the inverse function is explicitly

$$
f^{-1}(w)=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=\epsilon} \frac{f^{\prime}(z)}{f(z)-w} z \mathrm{~d} z .
$$

