
21. More on Series

We want to investigate convergence of series. Typically we are given
fk on a region Uk and we want to find a limit f on the limit region U .
Here u ∈ U if and only if there is a k0 so that u ∈ Uk, for all k ≥ k0.
More often than not, the Uk are nested, so that

U1 ⊂ U2 ⊂ U3 . . . .

In this case U =
⋃
Uk.

Theorem 21.1 (Weierstrass’ Theorem). Suppose that fk is holomor-
phic on a region Uk and that fk converges to f on U , uniformly on
every compact subset of U .

Then f is holomorphic on U and f ′k(z) converges uniformly to f ′(z)
on every compact set.

Proof. Pick a ∈ U and pick r > 0 so that |z − a| ≤ r is a subset of U .
As this disc is compact, it follows that there is a k0 such that this disc
is in Uk for all k ≥ k0. Let γ be any closed curve in the disc |z−a| ≤ r.
By Cauchy’s Theorem, ∫

γ

fk(z) dz = 0.

Taking limits, it follows that∫
γ

f(z) dz = 0.

But then f(z) is holomorphic by Morera’s Theorem.
For the second statement, we start by giving another proof of the

first statement. Cauchy’s Integral Formula says

fk(z) =
1

2πi

∫
C

fk(w)

w − z
dz,

where C is the circle |w − z| ≤ r. Taking limits we get

f(z) =
1

2πi

∫
C

f(w)

w − z
dz,

and so f(z) is holomorphic. The same proof applies to the derivative.
Hence the second statement. �

One typical way to apply (21.1) is to the sequence of partial sums

f(z) = f1(z) + f2(z) + · · ·+ fk(z) + . . . .

If this series converges uniformly on compact subsets, then f(z) is
holomorphic and we can find the derivative of f by taking the derivative
of every term.
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One must be careful about the behaviour at the boundary. For
example, consider

∞∑
n=1

zn

n2
.

This is uniformly convergent for |z| ≤ 1. But the derivative
∞∑
n=0

zn

(n+ 1)

is not convergent on the boundary. Indeed

f ′(z) =
log(1− z)

z
.

Theorem 21.2 (Hurwitz). Suppose that fk(z) are holomorphic and
nowhere zero in a region U and that fk(z) converges to f(z) uniformly
on compact subsets.

Then f(z) is either identically zero or never zero.

Proof. Suppose that f(z) is not the zero function. Then the zeroes of
f are isolated. Then given any a ∈ U , there is an r such that f(z) is
not zero on the punctured neighbourhood 0 < |z − a| ≤ r of a. Then
|f(z)| has a positive minimum on the circle C, |z − a| = r. Thus 1/fn
converges uniformly to 1/f on C. As f ′k(z) converges uniformly to f ′(z)
on C, we have

lim
n→∞

1

2πi

∫
C

f ′n(z)

fn(z)
dz =

1

2πi

∫
C

f ′(z)

f(z)
dz.

But the integrals on the LHS are all zero, since they give the number
of zeroes of fk in the circle. Thus the integal on the RHS is zero and f
has no zeroes in C. �

Definition 21.3. A series of the form
n=∞∑
n=−∞

anz
n,

is called a Laurent series.

Consider a series of the form

b0 + b1z
−1 + b2z

−2 + . . . .

Replacing z by 1/z, it is clear that this series converges for |z| > R,
for some R and convergence is uniform for |z| > ρ, where ρ > R.

Now a Laurent series is obviously the sum of an ordinary series in z
and a series of the form above in z−1. It follows that given a Laurent
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series, there are real numbers R1 and R2 such that the series converges
in the annulus R1 < |z| < R2.

Theorem 21.4. Let f(z) be a function holomorphic in an annulus
R1 < |z − a| < R2. Then we may express f as a Laurent series

f(z) =
∞∑

n=−∞

an(z − a)n.

Proof. We may as well suppose that a = 0. It suffices to decompose f
as

f(z) = f1(z) + f2(z)

where f1(z) is holomorphic for |z| > R1 and f2(z) is holomorphic for
|z| < R2.

Define

f1(z) = − 1

2πi

∫
|w|=r

f(w) dw

w − z
for R1 < r < |z|

f2(z) =
1

2πi

∫
|w|=r

f(w) dw

w − z
for |z| < r < R2.

Note that by Cauchy’s Theorem two things follow:

(1) The integrals do not depend on r. Thus f1(z) is holomorphic
for |z| > R1 and f2(z) for |z| < R2.

(2) f(z) = f1(z) + f2(z), since the two circles have zero winding
number about any point outside the annulus. �

It is interesting to use the proof of (21.4) to find the coefficients of
the Laurent series. As we already know,

an =
1

2πi

∫
|w−a|=r

f(w) dw

(w − a)n+1
,

for all n ≥ 0.
It turns out that a similar expression holds for the negative coef-

ficients. To prove this, it suffices to take the integral for f2(z) and
transform it by the change of coordinates w −→ w′, where

w = a+
1

w′
.

We have

z = a+
1

z′
and dw = − 1

w′2
dw′,

also
f(w)

w − z
= −w′z′f(a+ 1/w′)

w′ − z′
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and

|w − a| = r becomes |w′| = 1

r
.

Thus

f2(a+ 1/z′) =
1

2πi

∫
|w′|=1/r

z′

w′
f(a+ 1/w′) dw′

w′ − z′
=
∞∑
n=1

bnz
′n.

As

z′

w′
1

w′ − z′
=

z′

w′2
1

1− z′/w′
=

z′

w′2
+
z′2

w′3
+
z′3

w′4
+ . . . ,

we have

bn =
1

2πi

∫
|w′|=1/r

f(a+ 1/w′) dw′

w′n+1
= − 1

2πi

∫
|w−a|=r

f(w)(w − a)n−1 dw.

Thus the expression above for an, is valid for all n.
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