21. More on Series

We want to investigate convergence of series. Typically we are given f_{k} on a region U_{k} and we want to find a limit f on the limit region U. Here $u \in U$ if and only if there is a k_{0} so that $u \in U_{k}$, for all $k \geq k_{0}$. More often than not, the U_{k} are nested, so that

$$
U_{1} \subset U_{2} \subset U_{3} \ldots
$$

In this case $U=\bigcup U_{k}$.
Theorem 21.1 (Weierstrass' Theorem). Suppose that f_{k} is holomorphic on a region U_{k} and that f_{k} converges to f on U, uniformly on every compact subset of U.

Then f is holomorphic on U and $f_{k}^{\prime}(z)$ converges uniformly to $f^{\prime}(z)$ on every compact set.

Proof. Pick $a \in U$ and pick $r>0$ so that $|z-a| \leq r$ is a subset of U. As this disc is compact, it follows that there is a k_{0} such that this disc is in U_{k} for all $k \geq k_{0}$. Let γ be any closed curve in the disc $|z-a| \leq r$. By Cauchy's Theorem,

$$
\int_{\gamma} f_{k}(z) \mathrm{d} z=0
$$

Taking limits, it follows that

$$
\int_{\gamma} f(z) \mathrm{d} z=0 .
$$

But then $f(z)$ is holomorphic by Morera's Theorem.
For the second statement, we start by giving another proof of the first statement. Cauchy's Integral Formula says

$$
f_{k}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f_{k}(w)}{w-z} \mathrm{~d} z
$$

where C is the circle $|w-z| \leq r$. Taking limits we get

$$
f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(w)}{w-z} \mathrm{~d} z
$$

and so $f(z)$ is holomorphic. The same proof applies to the derivative. Hence the second statement.

One typical way to apply (21.1) is to the sequence of partial sums

$$
f(z)=f_{1}(z)+f_{2}(z)+\cdots+f_{k}(z)+\ldots
$$

If this series converges uniformly on compact subsets, then $f(z)$ is holomorphic and we can find the derivative of f by taking the derivative of every term.

One must be careful about the behaviour at the boundary. For example, consider

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}
$$

This is uniformly convergent for $|z| \leq 1$. But the derivative

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{(n+1)}
$$

is not convergent on the boundary. Indeed

$$
f^{\prime}(z)=\frac{\log (1-z)}{z}
$$

Theorem 21.2 (Hurwitz). Suppose that $f_{k}(z)$ are holomorphic and nowhere zero in a region U and that $f_{k}(z)$ converges to $f(z)$ uniformly on compact subsets.

Then $f(z)$ is either identically zero or never zero.
Proof. Suppose that $f(z)$ is not the zero function. Then the zeroes of f are isolated. Then given any $a \in U$, there is an r such that $f(z)$ is not zero on the punctured neighbourhood $0<|z-a| \leq r$ of a. Then $|f(z)|$ has a positive minimum on the circle $C,|z-a|=r$. Thus $1 / f_{n}$ converges uniformly to $1 / f$ on C. As $f_{k}^{\prime}(z)$ converges uniformly to $f^{\prime}(z)$ on C, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{2 \pi i} \int_{C} \frac{f_{n}^{\prime}(z)}{f_{n}(z)} \mathrm{d} z=\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)}{f(z)} d z .
$$

But the integrals on the LHS are all zero, since they give the number of zeroes of f_{k} in the circle. Thus the integal on the RHS is zero and f has no zeroes in C.

Definition 21.3. A series of the form

$$
\sum_{n=-\infty}^{n=\infty} a_{n} z^{n}
$$

is called a Laurent series.
Consider a series of the form

$$
b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\ldots
$$

Replacing z by $1 / z$, it is clear that this series converges for $|z|>R$, for some R and convergence is uniform for $|z|>\rho$, where $\rho>R$.

Now a Laurent series is obviously the sum of an ordinary series in z and a series of the form above in z^{-1}. It follows that given a Laurent
series, there are real numbers R_{1} and R_{2} such that the series converges in the annulus $R_{1}<|z|<R_{2}$.

Theorem 21.4. Let $f(z)$ be a function holomorphic in an annulus $R_{1}<|z-a|<R_{2}$. Then we may express f as a Laurent series

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-a)^{n}
$$

Proof. We may as well suppose that $a=0$. It suffices to decompose f as

$$
f(z)=f_{1}(z)+f_{2}(z)
$$

where $f_{1}(z)$ is holomorphic for $|z|>R_{1}$ and $f_{2}(z)$ is holomorphic for $|z|<R_{2}$.

Define

$$
\begin{array}{lll}
f_{1}(z)=-\frac{1}{2 \pi i} \int_{|w|=r} \frac{f(w) \mathrm{d} w}{w-z} & \text { for } & R_{1}<r<|z| \\
f_{2}(z)=\frac{1}{2 \pi i} \int_{|w|=r} \frac{f(w) \mathrm{d} w}{w-z} & \text { for } & |z|<r<R_{2} .
\end{array}
$$

Note that by Cauchy's Theorem two things follow:
(1) The integrals do not depend on r. Thus $f_{1}(z)$ is holomorphic for $|z|>R_{1}$ and $f_{2}(z)$ for $|z|<R_{2}$.
(2) $f(z)=f_{1}(z)+f_{2}(z)$, since the two circles have zero winding number about any point outside the annulus.

It is interesting to use the proof of (21.4) to find the coefficients of the Laurent series. As we already know,

$$
a_{n}=\frac{1}{2 \pi i} \int_{|w-a|=r} \frac{f(w) \mathrm{d} w}{(w-a)^{n+1}},
$$

for all $n \geq 0$.
It turns out that a similar expression holds for the negative coefficients. To prove this, it suffices to take the integral for $f_{2}(z)$ and transform it by the change of coordinates $w \longrightarrow w^{\prime}$, where

$$
w=a+\frac{1}{w^{\prime}} .
$$

We have

$$
z=a+\frac{1}{z^{\prime}} \quad \text { and } \quad \mathrm{d} w=-\frac{1}{w^{\prime 2}} \mathrm{~d} w^{\prime}
$$

also

$$
\frac{f(w)}{w-z}=-w^{\prime} z^{\prime} \frac{f\left(a+1 / w^{\prime}\right)}{w^{\prime}-z^{\prime}}
$$

and

$$
|w-a|=r \quad \text { becomes } \quad\left|w^{\prime}\right|=\frac{1}{r} .
$$

Thus

$$
f_{2}\left(a+1 / z^{\prime}\right)=\frac{1}{2 \pi i} \int_{\left|w^{\prime}\right|=1 / r} \frac{z^{\prime}}{w^{\prime}} \frac{f\left(a+1 / w^{\prime}\right) \mathrm{d} w^{\prime}}{w^{\prime}-z^{\prime}}=\sum_{n=1}^{\infty} b_{n} z^{\prime n}
$$

As

$$
\frac{z^{\prime}}{w^{\prime}} \frac{1}{w^{\prime}-z^{\prime}}=\frac{z^{\prime}}{w^{\prime 2}} \frac{1}{1-z^{\prime} / w^{\prime}}=\frac{z^{\prime}}{w^{\prime 2}}+\frac{z^{\prime 2}}{w^{\prime 3}}+\frac{z^{\prime 3}}{w^{\prime 4}}+\ldots
$$

we have
$b_{n}=\frac{1}{2 \pi i} \int_{\left|w^{\prime}\right|=1 / r} \frac{f\left(a+1 / w^{\prime}\right) \mathrm{d} w^{\prime}}{w^{\prime n+1}}=-\frac{1}{2 \pi i} \int_{|w-a|=r} f(w)(w-a)^{n-1} \mathrm{~d} w$.
Thus the expression above for a_{n}, is valid for all n.

