23. Infinite Products

Definition 23.1. Let p_{1}, p_{2}, \ldots be an infinite sequence of non-zero complex numbers.

$$
p_{1} p_{2} p_{3} \ldots p_{n} \cdots=\prod_{i=1}^{\infty} p_{i}
$$

is defined to be the limit of the partial products

$$
P_{n}=p_{1} p_{2} \ldots p_{n}
$$

Note that if the product converges, then in fact $\lim _{n \rightarrow \infty} p_{n}=1$. Indeed

$$
p_{n}=\frac{P_{n}}{P_{n-1}} .
$$

Given this, we set $p_{n}=1+a_{n}$ and rewrite our infinite product in the form,

$$
\prod_{n=1}^{\infty}\left(1+a_{n}\right) .
$$

If this product converges then $a_{n} \rightarrow 0$. Taking logarithms we obtain

$$
\sum_{n=1}^{\infty} \log \left(1+a_{n}\right)
$$

Here we take the principal branch of the logarithm.
Theorem 23.2. The infinite product

$$
\prod_{n=1}^{\infty}\left(1+a_{n}\right)
$$

converges if and only if

$$
\sum_{n=1}^{\infty} \log \left(1+a_{n}\right)
$$

converges.
Proof. Suppose that the series converges. Let the partial sums be S_{n} and set

$$
S=\lim _{n \rightarrow \infty} S_{n} .
$$

Then $P_{n}=e^{S_{n}}$ and by continuity

$$
P=\lim _{n \rightarrow \infty} P_{n}=\lim _{n \rightarrow \infty} e^{S_{n}}=e^{S} .
$$

Thus one direction is clear. The only tricky part of the other direction is to deal with the fact that the logarithm has more than one
branch. In general $\log P_{n}$ does not converge to $\log P$, but to one of its branches. Now as

$$
\frac{P_{n}}{P} \rightarrow 1
$$

it follows that

$$
\log \left(\frac{P_{n}}{P}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Now for every n there is an integer h_{n} such that

$$
\log \left(\frac{P_{n}}{P}\right)=S_{n}-\log P+h_{n}(2 \pi i)
$$

Taking differences, we have

$$
\left(h_{n+1}-h_{n}\right)(2 \pi i)=\log \left(\frac{P_{n+1}}{P}\right)-\log \left(\frac{P_{n}}{P}\right)-\log \left(1+a_{n}\right),
$$

so that taking the argument

$$
\left(h_{n+1}-h_{n}\right)(2 \pi)=\arg \left(\frac{P_{n+1}}{P}\right)-\arg \left(\frac{P_{n}}{P}\right)-\arg \left(1+a_{n}\right) .
$$

Now the first two terms on the right are approaching each other and the absolute value of the last term is at most π. Thus $h_{n+1}=h_{n}$ for n sufficiently large and so the series converges.

Definition 23.3. We say that the product P_{n} converges absolutely if the series

$$
\sum_{n=1}^{\infty} \log \left(1+a_{n}\right)
$$

converges absolutely.
Theorem 23.4. The product

$$
\prod_{n=1}^{\infty}\left(1+a_{n}\right)
$$

converges absolutely if and only if

$$
\sum_{n=1}^{\infty} a_{n}
$$

converges absolutely.
Proof. It suffices to prove that

$$
\sum_{n=1}^{\infty}\left|\log \left(1+a_{n}\right)\right|
$$

converges if and only if

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|
$$

converges. As

$$
\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1
$$

and as convergence of either series implies $a_{n} \rightarrow 0$, it follows that if $\epsilon>0$ and n is sufficiently large then

$$
(1-\epsilon)\left|a_{n}\right|<\left|\log \left(1+a_{n}\right)\right|<(1+\epsilon)\left|a_{n}\right| .
$$

