
24. Representation of Functions as products

Lemma 24.1. Let f(z) be an entire function.
Then f(z) is never zero if and only if there is an entire function g(z)

such that

f(z) = eg(z).

Proof. One direction is clear. The function

eg(z)

is never zero.
Otherwise consider

f ′(z)

f(z)
.

As this is entire, there is a holomorphic function g(z) such that

g′(z) =
f ′(z)

f(z)
.

Consider f(z)e−g(z). Its derivative is easily seen to be zero and the
result follows easily. �

Lemma 24.2. Let f(z) be an entire function with a finite number of
zeroes a1, a2, . . . , ak and a zero of order m at 0.

Then there is an entire function g(z) such that

f(z) = zmeg(z)
∏(

1− z

an

)
.

Proof. Clear, since the ratio

f(z)

zm
∏(

1− z
an

) ,
is zero free. �

Again, we would like to do the same thing for a holomorphic function
with an infinite number of zeroes. As before the only problem with the
naive approach of extending the formula of (24.2) to the infinite case,
are problems of convergence. In fact we are okay if∑ 1

|ak|

converges and in this case we get absolute convergence on |z| ≤ R. As
before in general we need to modify the product to induce convergence.
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So we try to introduce polynomials pn(z) such that

∞∏
n=1

(
1− z

an

)
epn(z)

converges.
Taking logs this is equivalent to convergence of the series

∞∑
n=1

rn(z),

where

rn(z) = log

(
1− z

an

)
+ pn(z).

Here the branch of the logarithm should be chosen so that the argument
of rn(z) lies between −π and π (inclusive).

Now consider the Taylor series of

log(1− y) = −y − y2/2− y3/3− . . . ,

valid for |y| < 1. Of course, here we are using the standard branch
of the logarithm. Ignoring the minus sign (which won’t affect con-
vergence), if we take qm(y) to be the first m terms, then what is left
is

1

m+ 1
ym+1 +

1

m+ 2
ym+2 + · · · ≤ 1

m+ 1
ym+1 (1− y)−1 ,

valid for |y| < 1.
Fix R and discard any term such that |an| ≤ R (there are only finitely

many such terms, so this will not affect convergence). If |z| < R and

y =
z

an
then |y| = R

|an|
< 1.

It follows that

|rn(z)| ≤ 1

m+ 1

(
R

|an|

)m+1(
1− R

|an|

)−1
.

Suppose that the series
∞∑
n=1

1

mn + 1

(
R

|an|

)mn+1

,

converges, for some choice of mn. Then we set pn(z) = qmn(z/an).
Provided |z|/|an| < 1, then rn(z) is close to zero and its argument is
then between −π and π. Then

∑
rn(z) is absolutely convergent and

uniformly convergent for |z| ≤ R.
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Picking mn = n, note that the series is absolutely convergent for all
R, since the sum above is dominated by a geometric series with ratio
less than one.

Theorem 24.3. Let a1, a2, . . . be a sequence of complex numbers that
tends to infinity. Then there is an entire function with these zeroes.

The most general function with these zeroes is of the form

f(z) = zmeg(z)
∞∏
n=1

(
1− z

an

)
eqmn (

z
an

),

where mn are integers, g(z) is entire and

qm(y) = y + (1/2)y2 + (1/3)y3 + · · ·+ (1/m)yn.

Corollary 24.4. Every function meromorphic on the whole plane is
the quotient of two entire functions.

Proof. Let F (z) be a function which is meromorphic on the whole plane.
Pick an entire function g(z) whose zeroes are located at the poles of
F (z). Then f(z) = F (z)g(z) is an entire function and

F (z) =
f(z)

g(z)
. �

The representation of (24.3) is considerably more interesting if we
can choose h = mn to be constant. By the proof of the Theorem, this
is equivalent to requiring convergence of the series

∞∑
n=1

(
R
|an|

)h+1

h+ 1
.

In other words we require convergence of the series
∞∑
n=1

1

|an|h+1
.

Definition 24.5. Pick the smallest value of h for which the series
above converges. The corresponding product is called the canonical
product and h is called the genus of the canonical product. Suppose
that further g(z) is a polynomial (for the canonical product). Then f
is said to be of finite genus, and the genus of f is the larger of the
degree of g and the genus of the canonical product.

For example, an entire function of genus zero, is of the form

Czm
∞∏
n=0

(
1− z

an

)
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with ∑ 1

|an|
<∞.

Genus one is either of the form

Czmeαz
∞∏
n=0

(
1− z

an

)
ez/an ,

with ∑ 1

|an|2
<∞, and

∑ 1

|an|
=∞,

or of the form

Czmeαz
∞∏
n=0

(
1− z

an

)
,

with ∑ 1

|an|
<∞, and α 6= 0.

Let us see what happens for sin πz. The zeroes are located at the
integers. As ∑ 1

n
diverges and ∑ 1

n2

converges, we have a representation of the form

sin πz = zeg(z)
∏
n6=0

(
1− z

n

)
ez/n.

Taking the logarithmic derivative, we have

cotπz =
1

z
+ g′(z) +

∑
n 6=0

(
1

z − n
+

1

n

)
.

Here, we are allowed to differentiate term by term, as we have uni-
form convergence away from z = n. As we have already found such an
expression for cot πz, we see that g′(z) = 0 so that g(z) is constant.
Now

lim
z→0

sin πz

z
= π,

so that
eg(z) = π.

It follows that

sin πz = πz
∏
n 6=0

(
1− z

n

)
ez/n.
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Thus sin πz is an entire function of genus 1. Combining the ±n terms,
we also have

sin πz = πz

∞∏
n=1

(
1− z2

n2

)
.
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