
3. Polynomials and Rational Functions

Note that the function z is holomorphic. Since the sum, product and
scalar multiple of any holomorphic functions is holomorphic, it follows
that any polynomial

P (z) = anz
n + an−1z

n−1 + · · ·+ a0,

is holomorphic.
By the Fundamental Theorem of Algebra (to be proved later) we can

completely factor P (z),

P (z) = an(z − α1)(z − α2)(z − α3) · · · (z − αn).

Recall that if we write

P (z) = (z − α)kQ(z)

where Q(z) is a polynomial and Q(α) 6= 0, then we say that α is a zero
of order k. By the standard rules of calculus the order k is determined
by the prescription

P (α) = · · · = P (k−1)(α) = 0

and P (k)(α) 6= 0.

Proposition 3.1. The zeroes of P ′(z) lie in the smallest convex poly-
gon determined by the zeroes of P (z).

Proof. It is a standard result in convex geometry that a closed convex
set is the intersection of the half spaces that contain it. Therefore it
suffices to prove that if all the zeroes of P (z) lie in some half space H,
then the zeroes of P ′(z) lie in the same half space. Translating and
rotating we may as well assume that this half space is given by the
imaginary part of z is greater than zero.

Now

f(z) =
P ′(z)

P (z)
=

1

z − α1

+
1

z − α2

+ · · ·+ 1

z − αn

.

Suppose that the imaginary part of z is less than zero. Then a zero
of P ′(z) is a zero of the rational function f(z), as the denominator P (z)
is not zero.

On the other hand, by assumption every αi has imaginary part
greater than zero. Hence the imaginary part of every z − αi is less
than zero. Now the imaginary part of the reciprocal of a complex
number has opposite sign and so every term in the sum above has pos-
itive imaginary part. In this case f(z) cannot be zero, as its imaginary
part is not zero. �
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Consider the rational function f(z) = P (z)/Q(z), given as the quo-
tient of two polynomial functions P (z) and Q(z). Cancelling common
factors, we may as well assume that P (z) and Q(z) are never both zero.
Note that a rational function P (z)/Q(z) is holomorphic, wherever the
denominator is not zero and we have the usual formula for the deriv-
ative. We call a zero α of Q(z) a pole of P (z)/Q(z). The order of
the pole α is equal to the order of α as a zero of Q(z).

To further understand rational functions, it is useful to work on
the extended complex plane, C ∪ {∞}. That is, we formally add a
number ∞ and we set f(α) = ∞, wherever α is a pole of f . The
natural question then becomes, can we assign a value to f(∞)? O
ne approach might be to take a limit. The problem with this is that
one cannot recover the order of f at infinity (supposing for example
that f(∞) = 0). The correct approach is to use the coordinate 1/z at
infinity.

For example, suppose

f(z) =
z + 1

z2 − 2
.

Consider g(z) = f(1/z). We want to compute g(0). Then

g(z) = f(1/z) =
1/z + 1

(1/z)2 − 2
=
z(1 + z)

1− 2z2
.

So f(∞) = g(0) = 0 and the order is 1.
There is another way to consider the extended complex plane. Sup-

pose that you take the sphere x2 + y2 + z2 = 1 inside R3. Take the
point p = (0, 0, 1) (the North pole). Consider projection from this
point down to the plane (x, y, 0) (that is, the plane z = 0).

This map is well-defined at any point of the sphere other than p.
Now a line can only meet a sphere in at most two points. Thus this

map is injective. Now suppose that one takes a horizontal plane that
lies somewhere between the North and South pole. This plane will cut
the sphere in a circle. Consider the image of this circle. It is easy to
see that we get a circle in the plane, with centre the origin.

When the plane is at the South pole, this circle has zero radius.
When the plane approaches the North pole, a moments thought will
convince the reader that the radius of this circle is approaching infinity.
Clearly the function which assigns to the height of the plane above
the South pole, the radius of the corresponding circle, is a continuous
function. By the intermediate value Theorem, we therefore get all
possible radii. Thus this map is also surjective.
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Thus the points of C = R2 are in bijection with the points of the
sphere minus the origin. Mapping the north pole to the point at in-
finity, we get a bijection between the extended complex plane and the
Riemann sphere.

The important point about this map is that it preserves angles. Thus
if you take two curves on the Riemann sphere and look at their images
in the plane, then the angle between them has not changed. A map
that preserves angles is called conformal. We will see later that this
is a defining property of holomorphic maps.

It is interesting to figure out images of various locii in the sphere.
We have already seen that the South pole is sent to the origin and the
North pole is sent to infinity. The equator is sent to the unit circle
(this is clear, as the the plane z = 0 cuts the sphere in the unit circle).
In particular (1, 0, 0) is sent to 1 and (0, 1, 0) is sent to i.

There is yet another way to look at this. The projective line P1

denotes the set of one dimensional linear subspaces of C2. Note that
given any point of C2−{0}, we get a line in C2 through the origin. On
the other hand two points which give the same line are non-zero scalar
multiples of each other and so

P1 =
C2 − {0}
C− {0}

.

Thus a point of P1 is represented by an equivalence class (u, v) of
non-zero vectors. We denote this equivalence class by [u : v]. Suppose
that v 6= 0. Then we may rescale v so that it is equal to one. Thus
[u : v] = [u/v : 1]. Now the ratio u/v can take on any value in C.
Thus P1 contains a copy of C. Suppose that v = 0. Then u 6= 0. Thus
[u : v] = [u : 0] = [1 : 0]. Thus P1 is a copy of C with a point added.

Suppose that we introduce coordinates X and Y on C2 (note that
X and Y are complex coordinates). We call X and Y homogeneous
coordinates on P1. Note that X and Y are not coordinates on P1, since
on P1 they are only well defined up to non-zero scalars. The only thing
we can ask is if they are zero or not.

However the ratio z = X/Y is an honest coordinate on P1, wherever
Y 6= 0. In fact z : P1 − [1 : 0] −→ C is exactly the identification of C
with the subset of P1 we obtained before.

On the other hand, the ratio Y/X is an honest coordinate on P1,
wherever X 6= 0, that is, on P1 − [0 : 1]. But

Y/X = 1/(X/Y ) = 1/z.

Thus we have exhibited explicit bijections between the extended
complex plane, the Riemann sphere and P1.
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