4. More about rational functions

Definition 4.1. A divisor D on \mathbb{P}^{1} is a formal linear combination of points with integral coefficients

$$
D=\sum_{p} n_{p} p
$$

where p ranges over the points of \mathbb{P}^{1} and only finitely many $n_{p} \neq 0$.
The degree of D is equal to $\sum_{p} n_{p} \in \mathbb{Z}$.
Let $f(z)=P(z) / Q(z)$ be a rational function. Suppose that we write $f(1 / z)=P_{1}(z) / Q_{1}(z)$. The divisor of zeroes of f is

$$
(f)_{0}=\sum_{p} \operatorname{ord}_{p} P(z) p+\operatorname{ord}_{0} P_{1}(z) q
$$

where $\operatorname{ord}_{p} P(z)$ is the order of vanishing and q represents the point $\infty=[1: 0]$. The divisor of poles of f, denoted $(f)_{\infty}$, is the divisor of zeroes of $1 / f$.

The divisor of f is the formal difference

$$
(f)=(f)_{0}-(f)_{\infty}
$$

The order of f is equal to the degree of $(f)_{0}$.
Proposition 4.2. Let $f(z)=P(z) / Q(z)$ be a rational function.
Then
(1) The degree of (f) is zero. That is, the number of zeroes equals the number of poles, counted according to multiplicity.
(2) The order of f is equal to the maximum of the degrees of P and Q.
(3) For every $a \in \mathbb{C}$, the order of $f(z)-a$ is equal to the order of f. That is, the number of solutions of the equation

$$
P(z) / Q(z)=a
$$

counted according to multiplicity, is equal to the order of f.
Proof. Suppose that the degree of P is m and the degree of Q is n. Then $z^{m} P(1 / z)$ and $z^{n} Q(1 / z)$ are both polynomials which are non-vanishing at zero. Assume that $m \leq n$. Now

$$
f(1 / z)=\frac{P(1 / z)}{Q(1 / z)}=\frac{z^{n} P(1 / z)}{z^{n} Q(1 / z)}=z^{n-m} \frac{z^{m} P(1 / z)}{z^{n} Q(1 / z)} .
$$

Thus f has a zero of order $n-m$ at ∞. The case $m>n$ is similar. (1) and (2) follow.

We prove (3). The rational function

$$
g(z)=f(z)-a=\frac{P(z)}{Q(z)}-a
$$

has the same poles as f. Thus the degree of $(g)_{\infty}$ is the degree of $(f)_{\infty}$ which by (1) is the same as the degree of $(f)_{0}$ which is by definition the order of f. On the other hand, the order of $f-a$ is the same as the order of g which by definition is the degree of $(g)_{0}$ which by (1) applied to g is the same as the order of $(g)_{\infty}$. This is (3).

In particular note that a rational function of order n defines a bijection from \mathbb{P}^{1} to \mathbb{P}^{1} if and only if $n=1$.

Definition 4.3. A rational function of order one is called a Möbius transformation.

Note that the general function Möbius transformation has the form

$$
z \longrightarrow \frac{a z+b}{c z+d}
$$

where a, b, c and d are complex numbers. Of course we require that $a z+b$ and $c z+d$ don't have the same root, that is, we require that $c z+d$ is not a scalar multiple of $a z+b$.

On the other hand it is proved in a course on Galois Theory that the group of field automorphisms of $K(x)$, where K is field and x is a transcendental element, is also of the same form, that is, the automorphism group consists of all transformations of the form

$$
x \longrightarrow \frac{a x+b}{c x+d} .
$$

In terms of \mathbb{P}^{1} note that any element of $\mathrm{GL}_{2}(\mathbb{C})$ acts naturally on \mathbb{C}^{2}, whence on \mathbb{P}^{1}. On the other hand any scalar matrix acts trivially on \mathbb{P}^{1}.

Definition 4.4. $\mathrm{PGL}_{2}(\mathbb{C})$ denotes the quotient of $\mathrm{GL}_{2}(\mathbb{C})$ by the subgroup of scalar matrices.

Thus a general element of $\mathrm{PGL}_{2}(\mathbb{C})$ is of the form

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right],
$$

an equivalence class of matrices.
It is also easy to write down the action of $\mathrm{PGL}_{2}(\mathbb{C})$. Indeed

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{l}
a X+b Y \\
c X+d Y
\end{array}\right]
$$

On the other hand $[X: Y]=[X / Y: 1]=[z: 1]$, at least when $Y \neq 0$ and

$$
\begin{aligned}
{[a X+b Y: c X+d Y] } & =[(a X+b Y) /(c X+d Y): 1] \\
& =[(a(X / Y)+b) /(c(X / Y)+d): 1] \\
& =[(a z+b) /(c z+d): 1] .
\end{aligned}
$$

Note that the condition that $c z+d$ is not a scalar multiple of $a z+b$ is exactly the condition that the matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is invertible. Finally note that the equality of transformations

$$
z \longrightarrow \frac{\lambda a z+\lambda b}{\lambda c z+\lambda d}=\frac{a z+b}{c z+d}
$$

Putting all this together we have:
Proposition 4.5. The following groups
(1) the Möbius transformations
(2) automorphisms of the field $\mathbb{C}(z)$, and
(3) $\mathrm{PGL}_{2}(\mathbb{C})$
are isomorphic.

