
4. More about rational functions

Definition 4.1. A divisor D on P1 is a formal linear combination of
points with integral coefficients

D =
∑
p

npp,

where p ranges over the points of P1 and only finitely many np 6= 0.
The degree of D is equal to

∑
p np ∈ Z.

Let f(z) = P (z)/Q(z) be a rational function. Suppose that we write
f(1/z) = P1(z)/Q1(z). The divisor of zeroes of f is

(f)0 =
∑
p

ordp P (z)p+ ord0 P1(z)q

where ordp P (z) is the order of vanishing and q represents the point
∞ = [1 : 0]. The divisor of poles of f , denoted (f)∞, is the divisor
of zeroes of 1/f .

The divisor of f is the formal difference

(f) = (f)0 − (f)∞.

The order of f is equal to the degree of (f)0.

Proposition 4.2. Let f(z) = P (z)/Q(z) be a rational function.
Then

(1) The degree of (f) is zero. That is, the number of zeroes equals
the number of poles, counted according to multiplicity.

(2) The order of f is equal to the maximum of the degrees of P and
Q.

(3) For every a ∈ C, the order of f(z) − a is equal to the order of
f . That is, the number of solutions of the equation

P (z)/Q(z) = a,

counted according to multiplicity, is equal to the order of f .

Proof. Suppose that the degree of P ism and the degree ofQ is n. Then
zmP (1/z) and znQ(1/z) are both polynomials which are non-vanishing
at zero. Assume that m ≤ n. Now

f(1/z) =
P (1/z)

Q(1/z)
=
znP (1/z)

znQ(1/z)
= zn−m

zmP (1/z)

znQ(1/z)
.

Thus f has a zero of order n−m at∞. The case m > n is similar. (1)
and (2) follow.
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We prove (3). The rational function

g(z) = f(z)− a =
P (z)

Q(z)
− a

has the same poles as f . Thus the degree of (g)∞ is the degree of (f)∞
which by (1) is the same as the degree of (f)0 which is by definition
the order of f . On the other hand, the order of f − a is the same as
the order of g which by definition is the degree of (g)0 which by (1)
applied to g is the same as the order of (g)∞. This is (3). �

In particular note that a rational function of order n defines a bijec-
tion from P1 to P1 if and only if n = 1.

Definition 4.3. A rational function of order one is called a Möbius
transformation.

Note that the general function Möbius transformation has the form

z −→ az + b

cz + d
,

where a, b, c and d are complex numbers. Of course we require that
az + b and cz + d don’t have the same root, that is, we require that
cz + d is not a scalar multiple of az + b.

On the other hand it is proved in a course on Galois Theory that the
group of field automorphisms of K(x), where K is field and x is a tran-
scendental element, is also of the same form, that is, the automorphism
group consists of all transformations of the form

x −→ ax+ b

cx+ d
.

In terms of P1 note that any element of GL2(C) acts naturally on
C2, whence on P1. On the other hand any scalar matrix acts trivially
on P1.

Definition 4.4. PGL2(C) denotes the quotient of GL2(C) by the sub-
group of scalar matrices.

Thus a general element of PGL2(C) is of the form

A =

[
a b
c d

]
,

an equivalence class of matrices.
It is also easy to write down the action of PGL2(C). Indeed[

a b
c d

] [
X
Y

]
=

[
aX + bY
cX + dY

]
.
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On the other hand [X : Y ] = [X/Y : 1] = [z : 1], at least when
Y 6= 0 and

[aX + bY : cX + dY ] = [(aX + bY )/(cX + dY ) : 1]

= [(a(X/Y ) + b)/(c(X/Y ) + d) : 1]

= [(az + b)/(cz + d) : 1].

Note that the condition that cz+ d is not a scalar multiple of az+ b is
exactly the condition that the matrix

A =

(
a b
c d

)
is invertible. Finally note that the equality of transformations

z −→ λaz + λb

λcz + λd
=
az + b

cz + d
.

Putting all this together we have:

Proposition 4.5. The following groups

(1) the Möbius transformations
(2) automorphisms of the field C(z), and
(3) PGL2(C)

are isomorphic.
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