
5. Holomorphic functions defined by series

Definition 5.1. Let f : U −→ C be a function defined on some open
subset of C. We say that f is analytic at a ∈ U if there is a sequence
of complex numbers a0, a1, a2, . . . such that

f(z) =
∑
n∈N

an(z − a)n

in some neighbourhood of p.
We say that f is analytic on U if it is analytic at every point of

U .

Definition-Lemma 5.2. Let
∑
an(z − a)n be a power series, where

a0, a1, a2, . . . are complex numbers. Then there is a real number 0 ≤
R ≤ ∞, called the radius of convergence with the following proper-
ties:

(1) For every |z − a| < R, the series converges absolutely.
(2) For every |z − a| > R, the series diverges.
(3) For every ρ < R, the series converges uniformly in the disc
|z − a| < ρ.

Further the number R satisfies

1

R
= lim sup |an|1/n.

Proof. We may suppose that a = 0. We first show (1) and (3). Suppose
ρ < R and |z| < ρ. Then, for n large enough,

|an|1/n < 1/ρ.

Hence, for n large enough,

|anzn| = (|an|1/n|z|)n < (|z|/ρ)n.

But |z|/ρ < 1 and so the series
∑

n |anzn| is dominated by a uni-
formly convergent geometric series. Hence (1) and (3).

Suppose that |z| > ρ > R. Then, for infinitely many n,

|an|1/n > (1/R)(R/ρ)

Hence, for infinitely many n,

|anzn| = (|an|1/n|z|)n > ((1/R)(R/ρ)ρ)n = 1.

But then (2) holds, as the terms of a convergent sum tend to zero. �

Consider the real power series

1− x+ x2 − x3 + . . .
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The radius of convergence is 1, and this series diverges at ±1. In
fact this is a geometric series, whose sum is

1

1 + x
.

Thus it is not at all surprising that this series diverges for x = −1,
since the corresponding function is not defined there. However if one
replaces x by x2, this will not change the radius of convergence, even
though the function

1

1 + x2

is defined at x = ±1.
However if we replace x by z and work in the complex plane, then if

we look at
1

1 + z2

we see that z = ±i are two points on the circle of convergence where
the function is not defined.

Lemma 5.3.

lim
n→∞

(n+ 1)1/n = 1.

Proof. Taking logs, it suffices to observe that

lim
n→∞

log(n+ 1)

n
= 0. �

Proposition 5.4. The analytic function f(z) =
∑
an(z − a)n is holo-

morphic inside the region |z − a| < R. Furthermore the derivative is
given by the power series

f ′(z) =
∑
n

nan(z − a)n−1

in the same region.
In particular every analytic function is infinitely differentiable.

Proof. As before we may as well set a = 0. Consider the series
∑
bnz

n,
where bn = (n + 1)an+1. Then the radius of convergence of this series
is equal to the inverse of the limit

lim sup |bn|1/n = lim sup(n+ 1)1/n|an|
= lim sup(n+ 1)1/n lim sup |an|

=
1

R
,
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where we used (5.3). Thus the power series
∑
bnz

n converges in the
circle |z| < R and we may define a function

g(z) =
∑
n∈N

bnz
n.

Suppose that we set sn(z) equal to the first n + 1 terms of the power
series expansion for f and let Rn(z) be the rest, so that

f(z) = sn(z) +Rn(z).

Then g(z) = limn→∞ s
′
n(z). Consider

f(z)− f(z0)

z − z0
−g(z0) =

(
sn(z)− sn(z0)

z − z0
− s′n(z0)

)
+(s′n(z0)− g(z0))+

(
Rn(z)−Rn(z0)

z − z0

)
for any |z0| < R. Since s′n(z0) converges to g(z0)

s′n(z0)− g(z0) < ε/3

for all n sufficiently large. The last term is
∞∑
k=n

ak+1
zk+1 − zk+1

0

z − z0
=
∞∑
k=n

ak+1(z
k + zk−1z0 + · · ·+ zzk−10 + zk0 ),

and so ∣∣∣∣Rn(z)−Rn(z0)

z − z0

∣∣∣∣ ≤ ∞∑
k=n

(k + 1)|ak+1|ρk.

Pick ε > 0. As the expression on the right is the tail of a convergent
series, we may find n sufficiently large so that the expression is less
than ε/3. On the other hand we may find δ > 0 such that the first
term is less than ε/3 for all |z − z0| < δ. Thus∣∣∣∣f(z)− f(z0)

z − z0
− g(z0)

∣∣∣∣ ≤ ε,

and we are done. �

3


	5. Holomorphic functions defined by series

