5. Holomorphic functions defined by series

Definition 5.1. Let $f: U \longrightarrow \mathbb{C}$ be a function defined on some open subset of \mathbb{C}. We say that f is analytic at $a \in U$ if there is a sequence of complex numbers $a_{0}, a_{1}, a_{2}, \ldots$ such that

$$
f(z)=\sum_{n \in \mathbb{N}} a_{n}(z-a)^{n}
$$

in some neighbourhood of p.
We say that f is analytic on U if it is analytic at every point of U.

Definition-Lemma 5.2. Let $\sum a_{n}(z-a)^{n}$ be a power series, where $a_{0}, a_{1}, a_{2}, \ldots$ are complex numbers. Then there is a real number $0 \leq$ $R \leq \infty$, called the radius of convergence with the following properties:
(1) For every $|z-a|<R$, the series converges absolutely.
(2) For every $|z-a|>R$, the series diverges.
(3) For every $\rho<R$, the series converges uniformly in the disc $|z-a|<\rho$.

Further the number R satisfies

$$
\frac{1}{R}=\limsup \left|a_{n}\right|^{1 / n}
$$

Proof. We may suppose that $a=0$. We first show (1) and (3). Suppose $\rho<R$ and $|z|<\rho$. Then, for n large enough,

$$
\left|a_{n}\right|^{1 / n}<1 / \rho .
$$

Hence, for n large enough,

$$
\left|a_{n} z^{n}\right|=\left(\left|a_{n}\right|^{1 / n}|z|\right)^{n}<(|z| / \rho)^{n} .
$$

But $|z| / \rho<1$ and so the series $\sum_{n}\left|a_{n} z^{n}\right|$ is dominated by a uniformly convergent geometric series. Hence (1) and (3).

Suppose that $|z|>\rho>R$. Then, for infinitely many n,

$$
\left|a_{n}\right|^{1 / n}>(1 / R)(R / \rho)
$$

Hence, for infinitely many n,

$$
\left|a_{n} z^{n}\right|=\left(\left|a_{n}\right|^{1 / n}|z|\right)^{n}>((1 / R)(R / \rho) \rho)^{n}=1 .
$$

But then (2) holds, as the terms of a convergent sum tend to zero.
Consider the real power series

$$
1-x+x^{2}-x^{3}+\ldots
$$

The radius of convergence is 1 , and this series diverges at ± 1. In fact this is a geometric series, whose sum is

$$
\frac{1}{1+x}
$$

Thus it is not at all surprising that this series diverges for $x=-1$, since the corresponding function is not defined there. However if one replaces x by x^{2}, this will not change the radius of convergence, even though the function

$$
\frac{1}{1+x^{2}}
$$

is defined at $x= \pm 1$.
However if we replace x by z and work in the complex plane, then if we look at

$$
\frac{1}{1+z^{2}}
$$

we see that $z= \pm i$ are two points on the circle of convergence where the function is not defined.

Lemma 5.3.

$$
\lim _{n \rightarrow \infty}(n+1)^{1 / n}=1
$$

Proof. Taking logs, it suffices to observe that

$$
\lim _{n \rightarrow \infty} \frac{\log (n+1)}{n}=0
$$

Proposition 5.4. The analytic function $f(z)=\sum a_{n}(z-a)^{n}$ is holomorphic inside the region $|z-a|<R$. Furthermore the derivative is given by the power series

$$
f^{\prime}(z)=\sum_{n} n a_{n}(z-a)^{n-1}
$$

in the same region.
In particular every analytic function is infinitely differentiable.
Proof. As before we may as well set $a=0$. Consider the series $\sum b_{n} z^{n}$, where $b_{n}=(n+1) a_{n+1}$. Then the radius of convergence of this series is equal to the inverse of the limit

$$
\begin{aligned}
\lim \sup \left|b_{n}\right|^{1 / n} & =\lim \sup (n+1)^{1 / n}\left|a_{n}\right| \\
& =\lim \sup (n+1)^{1 / n} \lim \sup \left|a_{n}\right| \\
& =\frac{1}{R},
\end{aligned}
$$

where we used (5.3). Thus the power series $\sum b_{n} z^{n}$ converges in the circle $|z|<R$ and we may define a function

$$
g(z)=\sum_{n \in \mathbb{N}} b_{n} z^{n}
$$

Suppose that we set $s_{n}(z)$ equal to the first $n+1$ terms of the power series expansion for f and let $R_{n}(z)$ be the rest, so that

$$
f(z)=s_{n}(z)+R_{n}(z) .
$$

Then $g(z)=\lim _{n \rightarrow \infty} s_{n}^{\prime}(z)$. Consider
$\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-g\left(z_{0}\right)=\left(\frac{s_{n}(z)-s_{n}\left(z_{0}\right)}{z-z_{0}}-s_{n}^{\prime}\left(z_{0}\right)\right)+\left(s_{n}^{\prime}\left(z_{0}\right)-g\left(z_{0}\right)\right)+\left(\frac{R_{n}(z)-R_{n}\left(z_{0}\right)}{z-z_{0}}\right)$
for any $\left|z_{0}\right|<R$. Since $s_{n}^{\prime}\left(z_{0}\right)$ converges to $g\left(z_{0}\right)$

$$
s_{n}^{\prime}\left(z_{0}\right)-g\left(z_{0}\right)<\epsilon / 3
$$

for all n sufficiently large. The last term is

$$
\sum_{k=n}^{\infty} a_{k+1} \frac{z^{k+1}-z_{0}^{k+1}}{z-z_{0}}=\sum_{k=n}^{\infty} a_{k+1}\left(z^{k}+z^{k-1} z_{0}+\cdots+z z_{0}^{k-1}+z_{0}^{k}\right),
$$

and so

$$
\left|\frac{R_{n}(z)-R_{n}\left(z_{0}\right)}{z-z_{0}}\right| \leq \sum_{k=n}^{\infty}(k+1)\left|a_{k+1}\right| \rho^{k} .
$$

Pick $\epsilon>0$. As the expression on the right is the tail of a convergent series, we may find n sufficiently large so that the expression is less than $\epsilon / 3$. On the other hand we may find $\delta>0$ such that the first term is less than $\epsilon / 3$ for all $\left|z-z_{0}\right|<\delta$. Thus

$$
\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-g\left(z_{0}\right)\right| \leq \epsilon,
$$

and we are done.

