
6. Examples of Functions defined by Series

We look at some interesting examples of functions given by power
series. Consider the differential equation

y′(z) = y,

subject to the initial value y(0) = 1. We look for solutions y which are
holomorphic functions of z.

We posit a solution that is given by a power series with centre the
origin,

y(z) =
∑

anz
n.

Then

y′(z) =
∑

(n+ 1)anz
n and y(0) = a0.

Hence the initial condition implies that

a0 = 1.

As y′(z) = y(z), comparing terms, we get

an+1 = an/(n+ 1).

Clearly the unique solution to this recurrence relation is

an = 1/n!.

Thus we get

y(z) = ez =
∞∑
n=0

zn

n!
.

For obvious reasons we call this function the exponential function. Note
that

lim inf(n!)1/n ≥ lim inf(n/2)1/2 =∞,
(since we are taking reciprocals the limsup gets replaced by a liminf)
so that the radius of convergence is infinity, that is, the exponential
function is everywhere holomorphic, that is, the exponential function
is entire.

Note that the holomorphic function f(z) = ea+z satsifies the differ-
ential equation

f ′ = f,

subject to the initial condition f(0) = ea. On the other hand this
differential equation has the unique solution f(z) = eaez. Thus

ea+b = eaeb,

for all complex numbers a and b.
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In particular eze−z = e0 = 1 and so ez is never zero. As the coeffi-
cients of the power series are all real

ez̄ = ez.

So

|eiy|2 = eiye−iy = e0 = 1

and

|ex+iy| = |ex|.
Having defined ez, it is possible to define two other entire holomor-

phic functions,

cos(z) =
eiz + e−iz

2
,

and

sin(z) =
eiz − e−iz

2i
.

Then

cos(z) = 1− z2/2 + z4/4! + . . .

and

sin(z) = z − z3/3! + z5/5! + . . . .

By definition

eiz = cos z + i sin z,

and so

cos2 z + sin2 z = 1.

Consider the periodicity of eiz. Suppose that

ei(z+c) = eiz.

Then eic = 1. Since 1 is a point on the unit circle, ic must be imaginary,
that is, c = θ ∈ R, where eiθ = 1. Using standard arguments, one can
show that there is a non-zero real number θ such that eiθ = 1.

On the other hand, consider the map

f : R −→ S1 given by c −→ eic,

where S1 is the unit circle |z| = 1. f is a homomorphism of topological
groups, that is, f is a group homomorphism of the additive group to
the circle and f is continuous. The kernel is a closed subgroup.

Proposition 6.1. Let f : U −→ C be a holomorphic function.
Then f is constant if f ′ is zero, or the real part u is constant, or

the imaginary part v is constant, or the modulus is constant, or the
argument is constant.
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Proof. If f ′ = 0 then all of the partials are zero and both u and v are
constant.

Suppose that u is constant. Then

f ′(z) =
∂u

∂x
− i∂u

∂y
= 0,

and so f is constant. If v is constant then the real part of the holo-
morphic function if is constant and so f is constant.

Suppose the modulus is constant. Then u2 + v2 = 0 is constant and
so

u
∂u

∂x
+ v

∂v

∂x
= 0.

Similarly

0 = u
∂u

∂y
+ v

∂v

∂y
= −u∂u

∂x
+ v

∂v

∂x
.

These two simultaneous linear equations imply that either

∂u

∂x
=
∂v

∂x
= 0,

or that the determinant u2+v2 = 0. In the latter case f = 0 is constant.
Either way f is constant.

Finally if the argument is constant then u = kv for some constant k
(or v is identically zero, in which case f is constant). But u− kv is the
real part of (1 + ik)f and so f must be constant. �

By (6.1) applied to the entire holomorphic function z −→ eiz, the
kernel is not the whole of R, since then the argument of eiz is constant
and so eiz is a constant function.

Since the kernel is closed there must be a smallest such θ. This is
called the period and it is denoted by 2π. Clearly this definition of π
is consistent with the standard one.

We want to define the logarithm log(z) of z. Clearly the logarithm
should be the inverse of the exponential. That is, if

w = log(z) then z = ew.

Unfortunately the inverse is not uniquely defined, simply because the
exponential is periodic, so that there are infinitely many w such that
z = ew. If w0 is one of them, then they are all given by w0 + 2kπi,
where k ∈ Z is an integer.

A region U is any connected open subset of C. A branch of the
logarithm on U , is a continuous function w = f(z) = log(z) on U , such
that ew = z. Given one branch f(z) there are infinitely many others,
given by f(z) + 2kπi, where k ∈ Z is an integer.
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We will show that we can construct a branch of the logarithm, on
the region

U = C− { z ∈ C | Im(z) = 0,Re(z) ≤ 0 }.
Suppose that w = x+ iy. Then the equation

ew = z,

reduces to the two equations,

ex = |z|
and

eiy =
z

|z|
.

The first equation has the solution x = log(|z|), where we take the
ordinary real logarithm. The second equation has infinitely many so-
lutions. We pick the unique solution such that −π < y < π.

It is convenient to rewrite all of this in the form

z = reiθ.

Here
θ = log(

z

|z|
)

and
r = |z|.

θ is called the argument, denoted arg z, and |z| is called the modulus.
We check that this choice of θ gives us a continuous function for the
logarithm.

Suppose w1 = u1 + iv1, where |v1| < π. Fix ε > 0. Consider the
subset A of C given by

|w − w1| ≥ ε, |v1| < π and |u− u1| < log 2.

This is closed and bounded, and so it is compact, and it is non-empty,
if ε is sufficiently small. The function

|ew − ew1|
is continuous and so it attains its minimum ρ. ρ > 0 as A does not
contain any point of the form

w1 + 2kπi.

Let

δ = min(ρ,
1

2
eu1).

Suppose that
|z − z1| = |ew − ew1| < δ.
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Then w /∈ A by choice of ρ. If u < u1 − log 2 then

|ew − ew1| ≥ eu1 − eu > 1

2
eu1 > δ

impossible and if u > u1 − log 2 then

|ew − ew1| ≥ eu − eu1 > eu1 > δ

impossible.
Thus |w − w1| < ε and the function is continuous. It is easy to

see that the logarithm is a holomorphic function, whose derivative is
1/z. This is essentially the inverse function theorem. Having chosen a
branch of the logarithm, we get branches of other well-known functions.

For example, consider defining a branch of the square root w =
f(z) =

√
z. We define the branch on the same open subset. We want

to solve
w2 = z.

Taking logs of both sides, we get

2 log(w) = log(z).

Thus
w = exp(log z/2).

If we write z = reiθ, then

log(z) = log(r) + iθ.

So
log z/2 = log r1/2 + iθ/2,

and
w =

√
reiθ/2.

That is, to find the square root on this branch, simply take the square
root of the modulus and half of the angle. With this choice of branch,

√
i = exp(iπ/4) =

1√
2

(1 + i).

Of course the other solution to the equation

z2 = i

is

exp(i3π/4) =
1√
2

(−1− i).
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