6. Examples of Functions defined by Series

We look at some interesting examples of functions given by power series. Consider the differential equation

$$
y^{\prime}(z)=y,
$$

subject to the initial value $y(0)=1$. We look for solutions y which are holomorphic functions of z.

We posit a solution that is given by a power series with centre the origin,

$$
y(z)=\sum a_{n} z^{n} .
$$

Then

$$
y^{\prime}(z)=\sum(n+1) a_{n} z^{n} \quad \text { and } \quad y(0)=a_{0} .
$$

Hence the initial condition implies that

$$
a_{0}=1 .
$$

As $y^{\prime}(z)=y(z)$, comparing terms, we get

$$
a_{n+1}=a_{n} /(n+1)
$$

Clearly the unique solution to this recurrence relation is

$$
a_{n}=1 / n!.
$$

Thus we get

$$
y(z)=e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} .
$$

For obvious reasons we call this function the exponential function. Note that

$$
\lim \inf (n!)^{1 / n} \geq \liminf (n / 2)^{1 / 2}=\infty
$$

(since we are taking reciprocals the limsup gets replaced by a liminf) so that the radius of convergence is infinity, that is, the exponential function is everywhere holomorphic, that is, the exponential function is entire.

Note that the holomorphic function $f(z)=e^{a+z}$ satsifies the differential equation

$$
f^{\prime}=f
$$

subject to the initial condition $f(0)=e^{a}$. On the other hand this differential equation has the unique solution $f(z)=e^{a} e^{z}$. Thus

$$
e^{a+b}=e^{a} e^{b},
$$

for all complex numbers a and b.

In particular $e^{z} e^{-z}=e^{0}=1$ and so e^{z} is never zero. As the coefficients of the power series are all real

$$
e^{\bar{z}}=\overline{e^{z}} .
$$

So

$$
\left|e^{i y}\right|^{2}=e^{i y} e^{-i y}=e^{0}=1
$$

and

$$
\left|e^{x+i y}\right|=\left|e^{x}\right|
$$

Having defined e^{z}, it is possible to define two other entire holomorphic functions,

$$
\cos (z)=\frac{e^{i z}+e^{-i z}}{2}
$$

and

$$
\sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}
$$

Then

$$
\cos (z)=1-z^{2} / 2+z^{4} / 4!+\ldots
$$

and

$$
\sin (z)=z-z^{3} / 3!+z^{5} / 5!+\ldots
$$

By definition

$$
e^{i z}=\cos z+i \sin z,
$$

and so

$$
\cos ^{2} z+\sin ^{2} z=1
$$

Consider the periodicity of $e^{i z}$. Suppose that

$$
e^{i(z+c)}=e^{i z}
$$

Then $e^{i c}=1$. Since 1 is a point on the unit circle, $i c$ must be imaginary, that is, $c=\theta \in \mathbb{R}$, where $e^{i \theta}=1$. Using standard arguments, one can show that there is a non-zero real number θ such that $e^{i \theta}=1$.

On the other hand, consider the map

$$
f: \mathbb{R} \longrightarrow S^{1} \quad \text { given by } \quad c \longrightarrow e^{i c}
$$

where S^{1} is the unit circle $|z|=1 . f$ is a homomorphism of topological groups, that is, f is a group homomorphism of the additive group to the circle and f is continuous. The kernel is a closed subgroup.

Proposition 6.1. Let $f: U \longrightarrow \mathbb{C}$ be a holomorphic function.
Then f is constant if f^{\prime} is zero, or the real part u is constant, or the imaginary part v is constant, or the modulus is constant, or the argument is constant.

Proof. If $f^{\prime}=0$ then all of the partials are zero and both u and v are constant.

Suppose that u is constant. Then

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}=0
$$

and so f is constant. If v is constant then the real part of the holomorphic function if is constant and so f is constant.

Suppose the modulus is constant. Then $u^{2}+v^{2}=0$ is constant and so

$$
u \frac{\partial u}{\partial x}+v \frac{\partial v}{\partial x}=0 .
$$

Similarly

$$
0=u \frac{\partial u}{\partial y}+v \frac{\partial v}{\partial y}=-u \frac{\partial u}{\partial x}+v \frac{\partial v}{\partial x}
$$

These two simultaneous linear equations imply that either

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial x}=0
$$

or that the determinant $u^{2}+v^{2}=0$. In the latter case $f=0$ is constant. Either way f is constant.

Finally if the argument is constant then $u=k v$ for some constant k (or v is identically zero, in which case f is constant). But $u-k v$ is the real part of $(1+i k) f$ and so f must be constant.

By (6.1) applied to the entire holomorphic function $z \longrightarrow e^{i z}$, the kernel is not the whole of \mathbb{R}, since then the argument of $e^{i z}$ is constant and so $e^{i z}$ is a constant function.

Since the kernel is closed there must be a smallest such θ. This is called the period and it is denoted by 2π. Clearly this definition of π is consistent with the standard one.

We want to define the $\operatorname{logarithm} \log (z)$ of z. Clearly the logarithm should be the inverse of the exponential. That is, if

$$
w=\log (z) \quad \text { then } \quad z=e^{w}
$$

Unfortunately the inverse is not uniquely defined, simply because the exponential is periodic, so that there are infinitely many w such that $z=e^{w}$. If w_{0} is one of them, then they are all given by $w_{0}+2 k \pi i$, where $k \in \mathbb{Z}$ is an integer.

A region U is any connected open subset of \mathbb{C}. A branch of the logarithm on U, is a continuous function $w=f(z)=\log (z)$ on U, such that $e^{w}=z$. Given one branch $f(z)$ there are infinitely many others, given by $f(z)+2 k \pi i$, where $k \in \mathbb{Z}$ is an integer.

We will show that we can construct a branch of the logarithm, on the region

$$
U=\mathbb{C}-\{z \in \mathbb{C} \mid \operatorname{Im}(z)=0, \operatorname{Re}(z) \leq 0\}
$$

Suppose that $w=x+i y$. Then the equation

$$
e^{w}=z
$$

reduces to the two equations,

$$
e^{x}=|z|
$$

and

$$
e^{i y}=\frac{z}{|z|} .
$$

The first equation has the solution $x=\log (|z|)$, where we take the ordinary real logarithm. The second equation has infinitely many solutions. We pick the unique solution such that $-\pi<y<\pi$.

It is convenient to rewrite all of this in the form

$$
z=r e^{i \theta}
$$

Here

$$
\theta=\log \left(\frac{z}{|z|}\right)
$$

and

$$
r=|z| .
$$

θ is called the $\operatorname{argument}$, denoted $\arg z$, and $|z|$ is called the modulus. We check that this choice of θ gives us a continuous function for the logarithm.

Suppose $w_{1}=u_{1}+i v_{1}$, where $\left|v_{1}\right|<\pi$. Fix $\epsilon>0$. Consider the subset A of \mathbb{C} given by

$$
\left|w-w_{1}\right| \geq \epsilon, \quad\left|v_{1}\right|<\pi \quad \text { and } \quad\left|u-u_{1}\right|<\log 2 .
$$

This is closed and bounded, and so it is compact, and it is non-empty, if ϵ is sufficiently small. The function

$$
\left|e^{w}-e^{w_{1}}\right|
$$

is continuous and so it attains its minimum $\rho . \rho>0$ as A does not contain any point of the form

$$
w_{1}+2 k \pi i
$$

Let

$$
\delta=\min \left(\rho, \frac{1}{2} e^{u_{1}}\right)
$$

Suppose that

$$
\left|z-z_{1}\right|=\left|e_{4}^{w}-e^{w_{1}}\right|<\delta
$$

Then $w \notin A$ by choice of ρ. If $u<u_{1}-\log 2$ then

$$
\left|e^{w}-e^{w_{1}}\right| \geq e^{u_{1}}-e^{u}>\frac{1}{2} e^{u_{1}}>\delta
$$

impossible and if $u>u_{1}-\log 2$ then

$$
\left|e^{w}-e^{w_{1}}\right| \geq e^{u}-e^{u_{1}}>e^{u_{1}}>\delta
$$

impossible.
Thus $\left|w-w_{1}\right|<\epsilon$ and the function is continuous. It is easy to see that the logarithm is a holomorphic function, whose derivative is $1 / z$. This is essentially the inverse function theorem. Having chosen a branch of the logarithm, we get branches of other well-known functions.

For example, consider defining a branch of the square root $w=$ $f(z)=\sqrt{z}$. We define the branch on the same open subset. We want to solve

$$
w^{2}=z
$$

Taking logs of both sides, we get

$$
2 \log (w)=\log (z)
$$

Thus

$$
w=\exp (\log z / 2)
$$

If we write $z=r e^{i \theta}$, then

$$
\log (z)=\log (r)+i \theta
$$

So

$$
\log z / 2=\log r^{1 / 2}+i \theta / 2
$$

and

$$
w=\sqrt{r} e^{i \theta / 2}
$$

That is, to find the square root on this branch, simply take the square root of the modulus and half of the angle. With this choice of branch,

$$
\sqrt{i}=\exp (i \pi / 4)=\frac{1}{\sqrt{2}}(1+i)
$$

Of course the other solution to the equation

$$
z^{2}=i
$$

is

$$
\exp (i 3 \pi / 4)=\frac{1}{\sqrt{2}}(-1-i)
$$

