8. More about Möbius Transformations

Recall that a Möbius Transformations is a rational function of degree one, so that as a transformation f of the extended complex plane

$$
z \longrightarrow \frac{a z+b}{c z+d}
$$

Here $f(\infty)=a / c$ and $f(-d / c)=\infty$. Möbius Transformations are sometimes called linear transformations, for obvious reasons.

It is not hard to prove that the group of Möbius Transformations is exactly thrice transitive.

Indeed if z_{1}, z_{2}, z_{3} are three points of \mathbb{C}, then

$$
z \longrightarrow \frac{z_{3}-z_{2}}{z_{3}-z_{1}} \frac{z-z_{1}}{z-z_{2}}
$$

sends z_{1} to zero, z_{2} to infinity and z_{3} to 1 .
On the other hand, by direct computation, it is not hard to show that the only Möbius Transformation which fixes 0,1 and ∞ is the identity transformation.

Using this fact, one can define an extremely important invariant of four ordered points z_{1}, z_{2}, z_{3} and z_{4} in $\mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}$.

Definition 8.1. Let z_{1}, z_{2}, z_{3} and z_{4} be four distinct points of the extended complex plane.

The cross-ratio of these four points is

$$
\frac{z_{2}-z_{4}}{z_{2}-z_{3}} \frac{z_{1}-z_{3}}{z_{1}-z_{4}}
$$

By what we have just said, the cross-ratio λ is the image of z_{1} when you use a Möbius transformation to send z_{2} to $1, z_{3}$ to 0 and z_{4} to ∞. Note the cross-ratio is invariant under the action of the Möbius Transformations and vice-versa:

Lemma 8.2. Given a pair of four distinct ordered points z_{1}, z_{2}, z_{3} and z_{4}, and $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ and z_{4}^{\prime} of the extended complex plane, we may find a Möbius Transformations carrying one set to the other if and only if the cross-ratios λ and λ^{\prime} are equal.

On the other hand the cross-ratio is not an invariant under changing the order:

Lemma 8.3. The group of Möbius Transformations that preserve the set $\{0,1, \infty\}$ is isomorphic to S_{3}, generated by

$$
z \longrightarrow 1 / z \quad \text { and } \quad z \longrightarrow 1-z
$$

Proof. Since the group of Möbius Transformations is precisely thrice transitive, the subgroup of Möbius Transformations that preserve the set $\{0,1, \infty\}$ is isomorphic to S_{3}.

On the other hand

$$
z \longrightarrow 1 / z \quad \text { and } \quad z \longrightarrow 1-z
$$

map to two different transpositions, and any two transpositions generate S_{3}.

The stabiliser of the set $\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ turns out to always contain the Klein VierrerGruppe V. Indeed the transformation,

$$
z \longrightarrow \lambda / z
$$

switches 0 and ∞ and 1 and λ, and by symmetry we can get any other permutation which switches two pairs of elements. The quotient of S_{4} by the subgroup V is S_{3}.
Definition-Lemma 8.4. Given four points z_{1}, z_{2}, z_{3} and z_{4} in the plane, the j-invariant is the number

$$
2^{8} \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}}
$$

where λ is the cross-ratio.
Two sets of four points in \mathbb{P}^{1} may be mapped to each other by an Möbius transformation of \mathbb{P}^{1} if and only if they have the same j invariant.

Proof. We first check that the j-invariant does not depend on the order.
It suffices to check what happens under the two transpositions. This is an easy check.

Now use a little Galois theory. We want the fixed field K of S_{3} acting on $L=\mathbb{C}(\lambda)$. Then L / K is Galois, and the degree is six.

Now $E=\mathbb{C}(j) \subset K$ and λ satisfies a degree six polynomial over E. Thus L / E has degree at most six. But then $K=E$.

It is interesting to note that there are two very special values of the j invariant, 0 and 1728. They correspond to the sets of four points which have extra automorphisms. In fact, one set corresponds to $0,1, \infty,-1$. Here we have an extra \mathbb{Z}_{2}, corresponding to

$$
z \longrightarrow 1 / z .
$$

The other corresponds to $1, \omega, \omega^{2}, 0$, where ω is a cube root of unity. Here we have an extra \mathbb{Z}_{3}, corresponding to

$$
z \longrightarrow \omega z
$$

