8. More about Möbius Transformations

Recall that a Möbius Transformations is a rational function of degree one, so that as a transformation f of the extended complex plane

$$z \mapsto \frac{az + b}{cz + d}.$$

Here $f(\infty) = \frac{a}{c}$ and $f(-d/c) = \infty$. Möbius Transformations are sometimes called linear transformations, for obvious reasons.

It is not hard to prove that the group of Möbius Transformations is exactly thrice transitive.

Indeed if z_1, z_2, z_3 are three points of \mathbb{C}, then

$$z \mapsto \frac{z_3 - z_2 z - z_1}{z_3 - z_1 z - z_2}$$

sends z_1 to zero, z_2 to infinity and z_3 to 1.

On the other hand, by direct computation, it is not hard to show that the only Möbius Transformation which fixes 0, 1 and ∞ is the identity transformation.

Using this fact, one can define an extremely important invariant of four ordered points z_1, z_2, z_3 and z_4 in $\mathbb{P}^1 = \mathbb{C} \cup \{\infty\}$.

Definition 8.1. Let z_1, z_2, z_3 and z_4 be four distinct points of the extended complex plane.

The **cross-ratio** of these four points is

$$\frac{z_2 - z_4 z_1 - z_3}{z_2 - z_3 z_1 - z_4}.$$

By what we have just said, the cross-ratio λ is the image of z_1 when you use a Möbius transformation to send z_2 to 1, z_3 to 0 and z_4 to ∞. Note the cross-ratio is invariant under the action of the Möbius Transformations and vice-versa:

Lemma 8.2. Given a pair of four distinct ordered points z_1, z_2, z_3 and z_4, and z_1', z_2', z_3' and z_4' of the extended complex plane, we may find a Möbius Transformations carrying one set to the other if and only if the cross-ratios λ and λ' are equal.

On the other hand the cross-ratio is not an invariant under changing the order:

Lemma 8.3. The group of Möbius Transformations that preserve the set $\{0, 1, \infty\}$ is isomorphic to S_3, generated by

$$z \mapsto 1/z \quad \text{and} \quad z \mapsto 1 - z.$$
Proof. Since the group of Möbius Transformations is precisely thrice transitive, the subgroup of Möbius Transformations that preserve the set \(\{0, 1, \infty\} \) is isomorphic to \(S_3 \).

On the other hand
\[
z \mapsto 1/z \quad \text{and} \quad z \mapsto 1 - z
\]
map to two different transpositions, and any two transpositions generate \(S_3 \).

The stabiliser of the set \(\{z_1, z_2, z_3, z_4\} \) turns out to always contain the Klein VierrerGruppe \(V \). Indeed the transformation,
\[
z \mapsto \lambda/z
\]
switches 0 and \(\infty \) and 1 and \(\lambda \), and by symmetry we can get any other permutation which switches two pairs of elements. The quotient of \(S_4 \) by the subgroup \(V \) is \(S_3 \).

Definition-Lemma 8.4. Given four points \(z_1, z_2, z_3 \) and \(z_4 \) in the plane, the \(j \)-invariant is the number
\[
2^8 \left(\frac{\lambda^2 - \lambda + 1}{\lambda^2(\lambda - 1)^2} \right)^3,
\]
where \(\lambda \) is the cross-ratio.

Two sets of four points in \(\mathbb{P}^1 \) may be mapped to each other by an Möbius transformation of \(\mathbb{P}^1 \) if and only if they have the same \(j \)-invariant.

Proof. We first check that the \(j \)-invariant does not depend on the order.

It suffices to check what happens under the two transpositions. This is an easy check.

Now use a little Galois theory. We want the fixed field \(K \) of \(S_3 \) acting on \(L = \mathbb{C}(\lambda) \). Then \(L/K \) is Galois, and the degree is six.

Now \(E = \mathbb{C}(j) \subset K \) and \(\lambda \) satisfies a degree six polynomial over \(E \).

Thus \(L/E \) has degree at most six. But then \(K = E \). \(\square \)

It is interesting to note that there are two very special values of the \(j \)-invariant, 0 and 1728. They correspond to the sets of four points which have extra automorphisms. In fact, one set corresponds to \(0, 1, \infty, -1 \).

Here we have an extra \(\mathbb{Z}_2 \), corresponding to
\[
z \mapsto 1/z.
\]
The other corresponds to \(1, \omega, \omega^2, 0 \), where \(\omega \) is a cube root of unity.

Here we have an extra \(\mathbb{Z}_3 \), corresponding to
\[
z \mapsto \omega z.
\]