9. Circles and lines

Back to the cross-ratio. Suppose we have $z_{1}, z_{2}, z_{3}, z_{4}$. I claim that the cross-ratio is real if and only if these four points lie on a circle.

Indeed the cross-ratio is equal to

$$
\frac{z_{2}-z_{4}}{z_{2}-z_{3}} \frac{z_{1}-z_{3}}{z_{1}-z_{4}} .
$$

Taking arguments, the cross-ratio is real if and only if the difference

$$
\arg \left(\frac{z_{1}-z_{3}}{z_{1}-z_{4}}\right)-\arg \left(\frac{z_{2}-z_{3}}{z_{2}-z_{4}}\right)
$$

is 0 or $\pm \pi$.
The first angle is the angle $z_{4} z_{1} z_{3}$ and the second angle is the angle $z_{3} z_{2} z_{4}$. On the other hand, some classical Greek geometry says that if z_{3} and z_{4} are two points on a circle C then the angle subtended by z_{3} and z_{4} to two points on the circle C is always either the same or supplementary.

Another way to see that the cross-ratio is real, is to observe that it is enough to prove that the image of the real axis under a Möbius Transformation is a circle. Suppose that the transformation in question is the inverse of

$$
w \longrightarrow \frac{a w+b}{c w+d}=z
$$

As z is real, we have

$$
\frac{a w+b}{c w+d}=\frac{\bar{a} \bar{w}+\bar{b}}{\bar{c} \bar{w}+\bar{d}} .
$$

If one multiplies out we get

$$
(a \bar{c}-c \bar{a})\left|w^{2}\right|+(a \bar{d}-c \bar{b}) w+\left(b \bar{c}_{d} \bar{a}\right) w+b \bar{d}-d \bar{b}=0
$$

The coefficient of x^{2} and y^{2} is the same, so either we get a straight line or a circle. If $a \bar{c}-c \bar{a}=0$ then this is the equation of a straight line. Otherwise if we divide through by $a \bar{c}-c \bar{a}=0$ and complete the square we get:

$$
\left|w+\frac{\bar{a} d-\bar{c} b}{\bar{a} c-\bar{c} a}\right|=\left|\frac{a d-b c}{\bar{a} c-\bar{c} a}\right| .
$$

Note that the equation of a circle, with centre z_{0} and radius ρ can be written as

$$
\left|z-z_{0}\right|=\rho .
$$

Definition 9.1. Given two points z and z^{*}, we will say that these points are inverse with respect to the circle (aka symmetric with respect to the circle), if they are collinear with the centre, the product
of their distances to the centre is ρ^{2} and they are on the same side of the circle.

If $p=z_{0}+r e^{i \theta}$ and the circle is

$$
\left|z-z_{0}\right|=\rho
$$

then the inverse of p is $q=z_{0}+\left(\rho^{2} / r\right) e^{i \theta}$.
Let $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ denote the cross-ratio of z_{1}, z_{2}, z_{3} and z_{4}.
Theorem 9.2. Suppose that z_{1}, z_{2} and z_{3} are three points of the circle C. Then z and z^{*} are inverse points if and only if

$$
\left(z^{*}, z_{1}, z_{2}, z_{3}\right)=\overline{\left(z, z_{1}, z_{2}, z_{3}\right)}
$$

In particular if the circle C is the image of the real axis under a linear transformation then inverse points with respect to C correspond to complex conjugate points.

Proof. Note that the cross-ratio is invariant under linear transformations. We have

$$
\begin{aligned}
\overline{\left(z, z_{1}, z_{2}, z_{3}\right)} & =\overline{\left(z-z_{0}, z_{1}-z_{0}, z_{2}-z_{0}, z_{3}-z_{0}\right)} \\
& =\left(\bar{z}-\bar{z}_{0}, \frac{\rho^{2}}{z_{1}-z_{0}}, \frac{\rho^{2}}{z_{2}-z_{0}}, \frac{\rho^{2}}{z_{3}-z_{0}}\right) \\
& =\left(\frac{\rho^{2}}{\bar{z}-\bar{z}_{0}}, z_{1}-z_{0}, z_{2}-z_{0}, z_{3}-z_{0}\right) \\
& =\left(\frac{\rho^{2}}{\bar{z}-\bar{z}_{0}}+z_{0}, z_{1}, z_{2}, z_{3}\right) \\
& =\left(z^{*}, z_{1}, z_{2}, z_{3}\right),
\end{aligned}
$$

where we applied the transformation $z \longrightarrow z-z_{0}$ to get the first line, we used the fact that for a point on the circle,

$$
\overline{z^{\prime}-z_{0}}=\frac{\rho^{2}}{z^{\prime}-z_{0}}
$$

to get from the first line to the second line, we applied the transformation

$$
z \longrightarrow \frac{\rho^{2}}{z-z_{0}}
$$

which is its own inverse, to get from the second line to the third line and we applied the transformation $z z+z_{0} \longrightarrow$ to get from the third line to the fourth line

Corollary 9.3. Let C be a circle and let z and z^{*} be inverse points with respect to the cicle.

Suppose that the Möbius transformation $f(x)$ carries the circle C to the circle C^{\prime}. Then the images w and w^{*} are inverse points with respect to the circle C^{\prime}.

Informaly, a Möbius transformation carries inverse points to inverse points. This result follows from the fact that if C is the image of the real axis by some linear transformation, then inverse points with respect to C correspond to complex conjugate points.

Now suppose that $z=z_{0}+\rho e^{i \phi}$ is a point of the circle. Then

$$
\begin{aligned}
\frac{|z-p|}{|z-q|} & =\frac{\left|\rho e^{i \phi}-r e^{i \theta}\right|}{\left|\rho e^{i \phi}-\rho^{2} / r e^{i \theta}\right|} \\
& =\frac{\rho}{r} \frac{\left|\rho e^{i \phi}-r e^{i \theta}\right|}{\left|r e^{i \phi}-\rho e^{i \theta}\right|} \\
& =\frac{\rho}{r} \frac{\left|\rho e^{i \phi-\theta}-r\right|}{\left|r-\rho e^{i \theta-\phi}\right|} \\
& =\frac{\rho}{r} .
\end{aligned}
$$

This gives us another way to write down the equation of a circle.

$$
\frac{|z-p|}{|z-q|}=k
$$

where k is a positive real constant, is the equation of a circle, such that p and q are inverse points of this circle. Indeed, we just need to find a circle, such that the points p and q are inverse, where

$$
k=\frac{\rho}{r} .
$$

The points on the circle are a fixed ratio from two points p and q; classically these are known as the circles of Apollonius.

In fact, there is another way to look at all of this. Suppose one looks at the linear transformation,

$$
w=k \frac{z-a}{z-b} .
$$

One way to study any transformation is to investigate what happens to circles and lines. Now if one starts with a circle of radius ρ, centre the origin, then the image of this circle has the equation

$$
\frac{|z-a|}{|z-b|}=\frac{\rho}{|k|},
$$

a circle of Apollonius.
It is interesting to look at this a little more. Given the two points a and b, one can also look at the one parameter family of circles that pass
through a and b. Thus we get two one dimensional families of circles, determined by a and b. The circles with inverse point a and b and the circles containing these two points. This is called a Steiner system, or circular net. This pair of families of circles enjoy many interesting properties. For example:
(1) There is exactly one circle from each family through any point of the plane, other than either a or b.
(2) Every circle from one system meets a circle of the other at right angles.
(3) Reflection in a circle from one family, permutes the circles of the same family and fixes the circles of the other family.
Let's consider one seemingly special case, when when $a=0$ and $b=\infty$. Circles containing both a and b are lines through the origin. Circles with these points as inverse points are circles centred at the origin.

Suppose that $c \in \mathbb{C}^{*}$. There is exactly one line through the origin containing c and there is exactly one circle centred at the origin containing c.

A line through the origin is certainly orthogonal to a circle centred at the origin.

Reflection in a line through the origin certainly fixes a circle through the origin, and it certainly sends a line through the origin to another line through the origin. Similarly reflection in a circle centred at the origin fixes a line through the origin and sends a circle centred at the origin to a circle centred at the origin.

On the other hand, there is a Möbius transformation which carries two arbitrary points a and b to 0 and ∞ and this Möbius transformation preserves all three properties.

