MIDTERM

MATH 220A, UCSD, AUTUMN 14

You have 50 minutes.

There are 5 problems, and the total number of points is 70 . Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature: \qquad

Problem	Points	Score
1	15	
2	15	
3	15	
4	15	
5	10	
6	10	
7	10	
Total	70	

1. (15pts) Write down the Cauchy-Riemann equations (the complex or real form as you wish) and show that any holomorphic function must satisfy them.
Under what conditions is it true that a function which satisfies the Cauchy-Riemann equations is holomorphic?

Solution:

$$
\frac{\partial f}{\partial x}=-i \frac{\partial f}{\partial y}
$$

Suppose that f is holomorphic. Then f is differentiable and the following limit exists

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

Take $z=x+i y_{0}$. Then we get

$$
\lim x \rightarrow x_{0} \frac{f\left(x+i y_{0}\right)-f\left(x_{0}+i y_{0}\right)}{x-x_{0}}=\frac{\partial f}{\partial x}
$$

Now take $z=x_{0}+i y$. Then we get

$$
\lim y \rightarrow y_{0} \frac{f\left(x_{0}+i y\right)-f\left(x_{0}+i y_{0}\right)}{i\left(y-y_{0}\right)}=-i \frac{\partial f}{\partial y}
$$

These must be equal for the limit to exist.
If the partial derivatives are continuous and satisfy the Cauchy-Riemann equations, then f is holomorphic.
2. (15pts) Find a power series expansion for

$$
\frac{2 z-1}{z-3}
$$

about the point $z=2$. What is the radius of convergence?

Solution:

$$
\begin{aligned}
\frac{2 z-1}{z-3} & =\frac{2 z-6}{z-3}+5 \frac{1}{z-3} \\
& =2-5 \frac{1}{1-(z-2)} \\
& =2-5\left(1+(z-2)+(z-2)^{2}+(z-2)^{3}+\ldots\right) \\
& =-3-5(z-2)-5(z-2)^{2}-5(z-2)^{3}+\ldots
\end{aligned}
$$

The radius of convergence is one.
3. (15pts) Find a conformal transformation of the region $0<\operatorname{Re} z<1$ onto the interior of the unit disc.

Solution:

First rotate by ninety degrees,

$$
z \longrightarrow e^{i \pi / 2} z
$$

to get the strip $0<\operatorname{Im} z<1$. Now multiply by π,

$$
z \longrightarrow \pi z
$$

to get the strip $0<\operatorname{Im} z<\pi$. Now take the exponential,

$$
z \longrightarrow e^{z},
$$

to get the angular sector $0<\theta<\pi$, that is, the upper half plane. Now map the upper half plane to the unit circle, using one of the standard maps, for example,

$$
z \longrightarrow \frac{z-i}{z+i}
$$

4. (15pts) State a version of Cauchy's Theorem for rectangles, that involves functions which are holomorphic except possibly at finitely many points, and derive Cauchy's Integral Formula, for a rectangle, from this version.

Solution: Let $f(z)$ be a holomorphic inside a region U that contains a rectangle R, with a finite number of points $a_{1}, a_{2}, \ldots, a_{k}$ such that

$$
\lim _{z \rightarrow a_{i}}\left(z-a_{i}\right) f(z)=0 .
$$

Let γ be the boundary of the rectangle. Then

$$
\int_{\gamma} f(z) \mathrm{d} z=0 .
$$

Now let us derive Cauchy's Integral formula. Consider the function

$$
g(z)=\frac{f(z)-f(a)}{z-a}
$$

where a is a point inside the rectangle. Then

$$
\lim _{z \rightarrow a}(z-a) g(z)=0
$$

Thus

$$
\int_{\gamma} g(z) \mathrm{d} z=0 .
$$

On the other hand we claim that the winding number

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-a} d z=1
$$

There are manys ways to proceed. For example, $\mathbb{C}-\gamma$ has two components and the winding number is constant on the components. So we may assume that a is at the centre of the rectangle. Now one can proceed by direct computation. One can also argue that the this is the same as the winding number of a small circle centred at a.
Once the claim is established, the result follows easily.
5. (10pts) Evaluate the integral

$$
\int_{\gamma} \frac{\sin z}{z^{n}} \mathrm{~d} z
$$

where γ is a circle that contains the origin as an interior point.

Solution:

If $n \geq 0$ the integral is zero by Cauchy's Theorem. So we may assume that $n \leq-1$. Let $f(z)=\sin z$. Then by Cauchy's Integral Formula,

$$
f^{(n-1)}(0)=\frac{(n-1)!}{2 \pi i} \int_{\gamma} \frac{f(z)}{z^{n}} \mathrm{~d} z .
$$

Now $f(z)=\sin z$ so that

$$
f^{(n-1)}(z)=\left\{\begin{array}{lll}
\cos z & \text { if } n \equiv 2 & \bmod 4 \\
-\sin z & \text { if } n \equiv 3 & \bmod 4 \\
-\cos z & \text { if } n \equiv 0 & \bmod 4 \\
\sin z & \text { if } n \equiv 1 & \bmod 4
\end{array}\right.
$$

Therefore

$$
f^{(n-1)}(0)= \begin{cases}0 & \text { if } n \text { is odd } \\ 1 & \text { if } n \equiv 2 \bmod 4 \\ -1 & \text { if } n \equiv 0 \quad \bmod 4\end{cases}
$$

Thus

$$
\int_{\gamma} \frac{\sin z}{z^{n}} d z=\frac{2 \pi i}{(n-1)!} f^{(n-1)}(0)= \begin{cases}0 & \text { if } n \text { is odd } \\ \frac{2 \pi i}{(n-1)!!} & \text { if } n \equiv 2 \bmod 4 \\ -\frac{2 \pi i}{(n-1)!} & \text { if } n \equiv 0 \bmod 4\end{cases}
$$

Bonus Challenge Problems

6. (10pts) Classify all Möbius Transformations that send the upper half plane to the upper half plane.

Solution: We use the classification of all Möbius Transformations of the upper half plane to the unit disc. These are given as

$$
z \longrightarrow e^{i \lambda} \frac{z-\alpha}{z-\bar{\alpha}}
$$

where λ is real and $\operatorname{Im} \alpha>0$.
Now compose this, with any map back to the upper half plane, for example the inverse of

$$
z \longrightarrow \frac{z-i}{z+i}
$$

which is

$$
z \longrightarrow-i \frac{z+1}{z-1}
$$

Thus we get

$$
z \longrightarrow e^{i \lambda} \frac{-(i+1) z+\alpha-1}{-(i+\bar{\alpha}) z-i+\bar{\alpha}}
$$

7. (10pts) Is it true that a function which satisfies the Cauchy-Riemann equations is holomorphic?

Solution: No, we need that f has continuous partial derivatives. Look at the first hwk problem set.

