
MODEL ANSWERS TO THE FIRST HOMEWORK

1. It suffices to prove the following general result:

Lemma 0.1. Let f(x) and g(x) be general real rational functions. Let
n be a positive integer.

(1) Then the nth derivative of

f(x) exp(g(x)),

in a punctured neighbourhood of zero, has the form

f1(x) exp(g(x)),

where f1(x) is a rational function.

Now suppose that g(x) = −1/x2.

(2) The limit of

f(x) exp(g(x))

as x approaches zero is zero.
(3) Define a function φ(x) in a neighbourhood of zero, by setting

φ(x) =

{
f(x) exp(g(x)) for x 6= 0

0 for x = 0,

where g(x) = 1/x2. Then the nth derivative of φ(x) at zero is
zero.

Proof. We first prove (1). By an obvious induction it suffices to prove
this result in the case n = 1. Since we are working in a punctured
neighbourhood of zero, we may assume that both f(x) and g(x) are
defined. We can then calculate the derivative of f(x) exp(g(x)) using
the standard rules of calculus. We get

[f(x) exp(g(x))]′ = f ′(x) exp(g(x)) + f(x)g′(x) exp(g(x))

= f1(x) exp(g(x)),

where f1(x) is the rational function f ′(x) + f(x)g′(x). Hence (1).
To prove (2), note that we may write f(x) = xnf1(x), where both
the numerator and denonominator of f1(x) are coprime to x. Since
limx→0 f1(x) = f1(0) it suffices to show that

lim
x→0

xn exp(g(x))
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is equal to zero. The first trick is to replace x by y = 1/x2. As x
approaches zero, y approaches ∞. Thus we are reduced to calculating

lim
x→∞

xn/2 exp(−x).

Now if n < 0 the limit is obviously zero, since both terms are approach-
ing zero. Otherwise one term is going to zero and the other to infinity.
Applying L’ Hôpital’s rule enough times, we reduce to the case n < 0
(in fact n = −1/2) and the limit is zero. Hence (2).
By (1) and induction, we may assume that n = 1. We need to calculate
the limit

lim
x→0

f(x) exp(g(x))− φ(0)

x− 0
= lim

x→0

f(x) exp(g(x))

x
.

Now apply (2). �

2. Same as 1.
3. We have

u(x, y) =
x2y2

x2 + y4
,

and

v(x, y) =
xy3

x2 + y4
.

Consider first what happens as we approach zero along a line. Take
the line y = mx and suppose that x 6= 0. Then

u(x, y) = u(x,mx) = m2 x4

x2 +m4x4
= m2 x2

1 +m4x2
.

Thus the limit as x approaches zero is zero. Moreover if m = 0, then
we get u(x, 0) = 0. If we look at x = 0, then we get u(0, y) = 0.
In terms of v we get

v(x, y) = v(x,mx) = m3 x4

x2 +m4x4
= m3 x2

1 +m4x2
.

Thus the limit as x approaches zero is zero. Moreover if m = 0, then
we get v(x, 0) = 0. If we look at x = 0, then we get v(0, y) = 0. In
particular

∂u

∂x
= 0,

∂v

∂x
= 0,

∂u

∂y
= 0, and

∂v

∂y
= 0,

at zero, and so the Cauchy-Riemann equations are trivially satisfied.
Now suppose that you take the family of conics x = my2. Then

f(x, y) = f(my2, y) =
my4(my2 + iy)

m2y4 + y4
= my

y + i

1 +m2
.
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In this case
∂f

∂y
= m

2y + i

1 +m2
.

Evaluating at y = 0 we get

∂f

∂y
= i

m

1 +m2
.

Clearly this depends on the choice of m. For example if m = 0 we
get zero, but if m = 1 we get i/2. Thus f is not differentiable, since
the value of the limit depends on the path you choose to approach the
origin.
Note that we did not show that u and v are C1, just that their deriva-
tives exist. The proposition proved in class requires this condition.
4. There are two ways to prove this. Essentially we prove an appropri-
ate chain rule in both cases.
Suppose that z is a point where g is holomorphic and f is holomorphic
at g(z). We may suppose that z = 0. We show that

lim
z→0

f(g(z))− f(g(0))

z − 0
= f ′(g(z))g′(z).

There are two cases. Suppose that there is a solution to g(z) = g(0),
in any punctured neighbourhood of 0. We claim that both sides are
zero. As g is differentiable at 0, it follows that g′(0) = 0. Thus the
RHS is zero. On other the hand, if g(z) = g(0) then the numerator of
the limit is zero and so the LHS is zero.
Thus to compute the limit, we may assume that g(z) 6= g(0). In this
case

f(g(z))− f(g(0))

z − 0
=
f(g(z)− f(g(0))

g(z)− g(0)

g(z)− g(0)

z − 0
.

Since the limit of a product is the product of the limits, we are done.
Aliter: Suppose that w = g(z) and that f and g are arbitrary C1

functions of x and y. Note that there is a chain rule for ∂
∂z̄

∂f(g(z))

∂z̄
=
∂f

∂w

∂g

∂z̄
+
∂f

∂w̄

∂ḡ

∂z̄
,

which can be proved formally, from the definition of the operator ∂
∂z̄

.
But if f and g are holomorphic, then

∂g

∂z̄
= 0,

and
∂f

∂w̄
= 0,
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and so
∂f(g(z))

∂z̄
= 0

and we are done.
5. Set u(x, y) = ax3 + bx2y + cxy2 + dy3. For u to be harmonic we
must have

∇u =
∂2u

∂x2
+
∂2u

∂y2
= 0.

We get
6ax+ 2by + 2cx+ 6dy = 0.

Equating coefficients of x and y gives

c = −3a and b = −3d.

Thus u(x, y) = ax3 − 3dx2y − 3axy2 + dy3 is the general form. In this
case a harmonic conjugate would satisfy the differential equations

∂v

∂y
= 3ax2 − 6dxy − 3ay2 and

∂v

∂x
= 3dx2 + 6axy − 3dy2.

Integrating the first equation gives

v(x, y) = 3ax2y − 3dxy2 − ay3 + φ(x),

where φ(x) is an arbitrary function of x. Plugging this into the second
equation gives

φ′(x) + 6axy − 3dy2 = 3dx2 + 6axy − 3dy2.

Thus
φ′(x) = 3dx2,

and so φ(x) = dx3 is a solution. Thus the harmonic conjugate is

v(x, y) = dx3 + 3ax2y − 3dxy2 − ay3.

Aliter: One can also use the trick introduced in the 2nd lecture. If
f(z) = u+ iv then

f(z) = 2u(z/2, z/2i)− u(0, 0)

= 2(a(z/2)3 − 3d(z/2)2(z/2i)− 3a(z/2)(z/2i)2 + d(z/2i)3)

= (a+ 3di+ 3a+ di)z3/4

= (a+ di)z3

= (a+ di)(x+ iy)3.

The imaginary part is

v(x, y) = dx3 + 3ax2y − 3dxy2 − ay3.

4


