MODEL ANSWERS TO THE SECOND HOMEWORK

1. (i) Suppose that (a, b, c) is a point of the sphere. The antipodal point is $(-a,-b,-c)$. $(-a,-b,-c)$ is sent to the
Thus antipodal points are sent to points z, z^{\prime} such that $z \bar{z}^{\prime}=-1$. Given a non-zero complex number z there is a unique complex number \bar{z}^{\prime} such that $z \bar{z}^{\prime}=-1$; indeed

$$
z^{\prime}=-\frac{1}{\bar{z}}
$$

On the other hand, given any point of the sphere there is a unique antipodal point.
(ii) The points on the top face all lie on horizontal circle. This circle is sent to a circle centred at the oigin in \mathbb{C}^{2}. The four vertices are sent to the four points on this circle which make an angle of $\pi / 4$ with the real and imaginary axes.
It suffices to calculate the radius r of this circle. We use similar triangles. Consider the distance from a vertex to the z-axis. This is the hypotenuse of a right-angled triangle whose other sides are $1 / 2$. Thus this distance is

$$
\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}=\frac{1}{\sqrt{2}}
$$

The same line segment is the side of a right-angled triangle whose hypotenuse is goes from the centre of the triangle to a vertex which has length 1. Thus the other side has length

$$
\sqrt{1^{2}-\left(\frac{1}{\sqrt{2}}\right)^{2}}=\frac{1}{\sqrt{2}}
$$

One triangle of the two similar triangles has a vertex at the North pole, a vertex on the z axis and the top of the cube and the third vertex a vertex of the cube on the same face. The other triangle has vertices the North pole, the origin and the projection of this vertex of the cube. We have

$$
\frac{r}{1 / 2}=\frac{\frac{1}{\sqrt{2}}}{1-\frac{1}{\sqrt{2}}}
$$

Thus

$$
r=\frac{1}{2(\sqrt{2}-1)}
$$

It follows that the four vertices on the top of the cube are sent to

$$
\frac{2+\sqrt{2}}{4}(1+i), \quad \frac{2+\sqrt{2}}{4}(-1+i), \quad \frac{2+\sqrt{2}}{4}(-1-i), \quad \frac{2+\sqrt{2}}{4}(1-i) .
$$

The other four vertices of the cube are antipodal to the first four points. By (i) the other four points are

$$
\frac{2}{2+\sqrt{2}}(1+i), \quad \frac{2}{2+\sqrt{2}}(-1+i), \quad \frac{2}{2+\sqrt{2}}(-1-i), \quad \frac{2}{2+\sqrt{2}}(1-i) .
$$

2. We have to show that there is a unique Möbius transformation that carries three distinct point p_{1}, p_{2}, p_{3} to three other distinct points q_{1}, q_{2}, q_{3}.
To show that the group of Möbius transformations is thrice transitive it suffices to prove that the orbit of any set of three points, is the set of all three-tuples.
In other words we are free to choose one set of points as we please. We choose $q_{1}=\infty, q_{2}=0$ and $q_{3}=1$.
We first send p_{1} to q_{1}. We may assume that $p_{1} \neq \infty$. Then $p_{1}=a \in \mathbb{C}$ and $z \longrightarrow 1 /(z-a)$ sends p_{1} to q_{1}. Thus we may assume $p_{1}=q_{1}=\infty$. Now $z \longrightarrow a z+b$ fixes p_{1}. Suppose that $p_{2}=\lambda \in \mathbb{C}$. Then choose $a=1$ and $b=-\lambda$. This sends p_{2} to $q_{2}=0$.
Thus we may assume $p_{1}=q_{1}$ and $p_{2}=q_{2}$. Note that $z \longrightarrow a z$ fixes p_{1} and p_{2}.
Finally suppose that $p_{3}=\mu$. The transformation $z \longrightarrow(1 / \mu) z$ maps p_{3} to q_{3}.
Thus the group of Möbius transformations is certainly thrice transitive. Now suppose that the Möbius transformation

$$
z \longrightarrow \frac{a z+b}{c z+d}
$$

fixes 0,1 and ∞. As it fixes $\infty, c=0$. Rescaling we may assume $d=1$. As it fixes $0, b=0$. Finally as it fixes $1, a=1$. But then we have the identity transformation.
3. There are two ways to do this problem. Both start the same way. Note that if we differentiate $f(z)$ then we get $\sum n a_{n} z^{n-1}$.
The most straightforward thing to do is then multiply this by z to get $z f^{\prime}=\sum n a_{n} z^{n}$. Repeating this three times gives us what we want

$$
\left(z\left(z(z f)^{\prime}\right)^{\prime}\right)^{\prime}=\sum n^{3} a_{n} z^{n} .
$$

Another way to proceed is to differentiate f three times. This gives

$$
\sum n(n-1)(n-2) a_{n} z^{n-3}
$$

Now multiply by z^{3} to get

$$
\sum n(n-1)(n-2) a_{n} z^{n} .
$$

This is almost right. Subtracting, we see that we get an error involving a quadratic polynomial in n. Differentiating twice and doing the same thing, we reduce the error to a linear polynomial and so on. Details are left to the reader.
4. Easy, take $z_{2 n}=n, z_{2 n+1}=0$. This sequence is unbounded but has no limit.
5. The sequence z_{n} converges to infinity if and only if the sequence $y_{n}=1 / z_{n}$ tends to zero. Now nothing can be said about the real or imaginary parts of z_{n}, apart from the fact that at least one must be tending to infinity. Indeed the sequence $z_{n}=a+i b n$, where a and b are reals and a is arbitrary and b is non-zero, tends to infinity. On the other hand the real part is constant.
Replacing z_{n} by $i z_{n}$, clearly the same holds for the imaginary part. Given any complex number z, the sequence $z_{n}=n z$ tends to infinity. Taking $z=e^{i \theta}$ it is clear that the argument of the sequence tends to θ. On the other hand the modulus $|z|$ has to approach infinity.

