MODEL ANSWERS TO THE THIRD HOMEWORK

1. This is done by a trick. First suppose that $m=1$. Then we get

$$
\frac{1}{1-z}=1+z+z^{2}+\ldots
$$

simply because we recognize

$$
\frac{1}{1-z}
$$

as a geometric series with the given sum. Now suppose that we know the power series expansion of $(1-z)^{-m}$. The derivative of this is

$$
-m(1-z)^{-m-1}
$$

On the other hand, we can differentiate a series term by term. For example,

$$
(1-z)^{-2}=-\frac{1}{2}\left(1+2 z+3 z^{2}+4 z^{3}+\ldots\right)
$$

More generally,

$$
\begin{aligned}
(1-z)^{-(m+1)} & =-\frac{1}{m+1} \frac{d}{d z}(1-z)^{-m} \\
& =(-1)^{m-1} \frac{1}{(m+1)!} \frac{d^{m-1}}{d z^{m-1}}\left(1+z+z^{2}+\ldots,\right) \\
& =(-1)^{m-1} \frac{1}{(m+1)!}\left(m!+(m+1)!z+\frac{(m+2)!}{2} z^{2}+\cdots+\frac{(m+k)!}{k!} z^{k}+\ldots\right) \\
& =(-1)^{m-1} \frac{1}{m+1}\left(1+(m+1) z+\frac{(m+2)(m+1)}{2} z^{2}+\cdots+\binom{m+k}{m} z^{k}+\ldots\right)
\end{aligned}
$$

2. Note that

$$
\frac{2 z+3}{z+1}=\frac{2 y+5}{y+2}
$$

where $y=z-1$.

Now

$$
\begin{aligned}
\frac{1}{y+2} & =\frac{1}{2} \frac{1}{(1+y / 2)} \\
& =\frac{1}{2}\left(1-\frac{y}{2}+\left(\frac{y}{2}\right)^{2}-\left(\frac{y}{2}\right)^{3}+\ldots\right) \\
& =\frac{1}{2}\left(1-\frac{y}{2}+\frac{y^{2}}{4}+\cdots+(-1)^{n} \frac{y^{n}}{2^{n}}+\ldots\right) \\
& =\frac{1}{2}-\frac{y}{4}+\frac{y^{2}}{8}+\cdots+(-1)^{n} \frac{y^{n}}{2^{n+1}}+\ldots
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{2 z+3}{z+1} & =\frac{2 y+5}{y+2} \\
& =2+\frac{1}{y+2} \\
& =\frac{5}{2}-\frac{y}{4}+\frac{y^{2}}{8}+\cdots+(-1)^{n} \frac{y^{n}}{2^{n+1}}+\ldots \\
& =\frac{5}{2}-\frac{(z-1)}{4}+\frac{(z-1)^{2}}{8}+\cdots+(-1)^{n} \frac{(z-1)^{n}}{2^{n+1}}+\ldots
\end{aligned}
$$

The radius of convergence is 2 , as the radius of convergence of

$$
\frac{1}{(1+y / 2)}=\frac{1}{(1+(z-1) / 2)}
$$

is 2 .
3. By definition $\cos z$ and $\sin z$ are linear combinations of $e^{i z}$ and $e^{-i z}$.

Now

$$
e^{i i}=e^{-1}=1 / e \quad \text { and } \quad e^{i(-i)}=e^{1}=e .
$$

Thus

$$
\cos i=\frac{1}{2}\left(e+\frac{1}{e}\right)
$$

and

$$
\sin i=\frac{1}{2 i}\left(e-\frac{1}{e}\right) .
$$

4. Suppose that $w=s e^{i \phi}=2^{i}$. Taking logs of both sides, we get

$$
\log s+i \phi=i(\log 2+2 k \pi i)=i \log 2-2 k \pi
$$

for some integer k.

Equating real and imaginary parts, we get $\log s=-2 k \pi$, whence $s=$ $e^{-2 k \pi}$ and $\phi=\log 2$. Thus

$$
w=e^{-2 k \pi} e^{i \log 2}=e^{2 l \pi}(\cos (\log 2)+i \sin (\log 2)),
$$

where $l=-k$ is any integer.
Now suppose that $w=i^{i}$. Taking logs of both sides, we get

$$
\log s+i \phi=i(\log i+2 k \pi i)=i(i \pi / 2+2 k \pi i)=-(4 k+1) \pi / 2
$$

Thus, equating real and imaginary parts,

$$
s=e^{-(4 k+1) \pi / 2} \quad \text { and } \quad \phi=0 .
$$

So

$$
w=e^{(4 l+3) \pi / 2}
$$

where l is any integer.
Suppose that $w=(-1)^{2 i}$. Taking logs of both sides, we get

$$
\log s+i \phi=2 i(\log 1+(2 k+1) \pi i)=-(4 k+2) \pi
$$

for some integer k. Thus, equating real and imaginary parts,

$$
s=e^{-(4 k+2) \pi} \quad \text { and } \quad \phi=0 .
$$

So

$$
w=e^{(4 l+2) \pi}
$$

where l is any integer.
5. Suppose that $w=z^{z}$. Then $w=s e^{i \phi}$ and $z=r e^{i \theta}$ for appropriate r, s, θ and ϕ.
Now take logs of both sides

$$
\begin{aligned}
\log s+i \phi & =\log w \\
& =z \log z \\
& =r e^{i \theta}(\log r+i(2 \pi k+\theta)) \\
& =(r \log r) e^{i \theta}+i(2 \pi k+\theta) r e^{i \theta} .
\end{aligned}
$$

Now the complex conjugate of the last expression is

$$
(r \log r) e^{-i \theta}-i(2 \pi k+\theta) r e^{-i \theta}
$$

Thus the real part is

$$
\log s=r \log r \cos \theta-r(2 \pi k+\theta) \sin \theta
$$

and the imaginary part is

$$
\phi=r \log r \sin \theta+r(2 \pi k+\theta) \cos \theta
$$

So

$$
s=\exp (r \log r \cos \theta-r(2 \pi k+\theta) \sin \theta) .
$$

Thus the real part of z^{z} is
$\exp (r \log r \cos \theta-r(2 \pi k+\theta) \sin \theta) \cos (r \log r \sin \theta+r(2 \pi k+\theta) \cos \theta)$ and the imaginary part of z^{z} is $\exp (r \log r \cos \theta-r(2 \pi k+\theta) \sin \theta) \sin (r \log r \sin \theta+r(2 \pi k+\theta) \cos \theta)$.

