
MODEL ANSWERS TO THE FIFTH HOMEWORK

1. We try to find a map that sends the given region to an angular sector.
To do this, we want to send both circles to straight lines through the
origin. Thus we want to send one of the points of intersection of the
two circles to the origin and the other point to the point at infinity.
So we first find where the two circles intersect. If we write z = x+ iy,
the two equations

|z| = 1

|z − 1| = 1

become

x2 + y2 = 1

(x− 1)2 + y2 = 1.

It follows that x2 = (x − 1)2 so that −2x + 1 = 0 and x = 1/2 (we
could have also seen this by the obvious symmetries). It follows that
y2 = 3/4 and y = ±

√
3/2. Call the point above the y-axis α, so that

the other point is ᾱ.
We choose to send the point above the y-axis to zero and the point
below the y-axis to ∞. Such a map is given by

z −→ a
z − α
z − ᾱ

,

where a is any non-zero scalar. The point z = 0 is sent to aα
ᾱ

. It is
natural to choose a = ᾱ

α
. In this case the circle |z − 1| = 1 is sent to

the x-axis.
To determine the image of the circle |z| = 1, note that the point z = 1
is sent to

ᾱ

α

1− α
1− ᾱ

.

After some routine algebra, we see that the circle |z| = 1 is sent to the
line arg z = 2π/3 (or indeed, holomorphic maps preserve angles and
the angle between the two circles is 2π/3 as the angle between the two
radii is π/3).
To map this to the upper half plane, we want to increase the angle by
a factor of 3/2. The map z −→ z3/2 will achieve this. Finally the map

z −→ z − i
z + i

,
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will take the upper half plane to the interior of the unit disc
For what it is worth, the composition (obtained by multiplying two
matrices together) will be

z −→ ᾱ

α

(1− i)z3/2 + iᾱ− α
(1 + i)z3/2 − α− iᾱ

.

Finally that as Möbius transformations preserve inverse points, to check
that symmetries are preserved, it suffices to check that both symmetries
with respect to the x-axis (the line arg z = 0) and the line arg z = 2π/3
are preserved by the map z −→ z3/2. This is clear with respect the x-
axis (complex conjugate points are taken to complex conjugate points).
On the other hand, suppose that z = reiθ. Then the inverse point, with
respect to the line arg z = 2π/3, is the point z∗ = rei(4π/3−θ). Applying
the map z −→ z3/2 we get w = r3/2e3iθ/2 and w∗ = r3/2ei(2π−3θ) =
r3/2e−3iθ/2, which is the complex conjugate of w.
Hence the given map preserves both types of symmetries.
2 (i). We have γ(t) = (1 + i)t, for t ∈ [0, 1]. Then γ′(t) = 1 + i and∫

γ

x dz =

∫ 1

0

x(γ(t))(1 + i) dt

=

∫ 1

0

t(1 + i) dt

=
[
t2/2(1 + i)

]1
0

= 1/2 + i/2.

(ii) We have γ(t) = reit, for t ∈ [0, 2π]. Then γ′(t) = ire2πit and∫
γ

x dz =

∫ 2π

0

r cos(t)rieit dt

= r2

∫ 2π

0

cos(t)eit dt

= r2

∫ 2π

0

cos2(t) + i cos(t) sin(t) dt

= r2

∫ 2π

0

(1/2)1 dt

= r2πi,

where we use periodicity to eliminate some of the integrals and some
of the standard trigonometric identities.
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Aliter: ∫
γ

x dz =

∫
γ

1

2
(z +

r2

z
) dz

=
r2

2

∫
γ

1

z

= πir2,

where we used the CIF.
(iii) ∫

γ

dz

z2 − 1
=

1

2

∫
γ

dz

z − 1
− 1

2

∫
γ

dz

z + 1

= πi1− πi1 = 0,

where we used partial fractions and the CIF.
(iv) ∫

γ

ez

z2 − 1
dz =

1

2
(

∫
γ

ez

z − 1
dz)− 1

2
(

∫
γ

ez

z + 1
dz)

= πie+ πie−1,

where we used partial fractions and the CIF.
(v) ∫

γ

ezz−n dz =
2πi

(n− 1)!
,

using the version of Cauchy’s Integral Formula that involves higher
derivatives.
(vi) ∫

γ

zn(1− z)−m dz =
2πi

(m− 1)!
fm−1(1)

=
2πi

(m− 1)!
n(n− 1)(n− 2) · · · (n−m+ 2),

=
2πin!

(m+ 1)!(m− 1)!
,

using the version of Cauchy’s Integral Formula that involves higher
derivatives, where f(z) = zn.
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