## MODEL ANSWERS TO THE SIXTH HOMEWORK

1. As $f(z)$ is an entire holomorphic function it is analytic, so that it is given by a power series

$$
f(z)=\sum_{m \in \mathbb{N}} a_{m} z^{m}
$$

with an infinite radius of convergence.
We apply Cauchy's inequality. Let $\gamma$ be a circle of radius $r$. If $r$ is sufficiently large then $|f(z)| \leq r^{n}$ so that

$$
\left|a_{m}\right| \leq \frac{r^{n}}{r^{m}}=r^{n-m}
$$

As $r$ tends to infinity this tends to zero for all $m>n$. Thus $a_{m}=0$ for $m>n$. It follows that

$$
f(z)=\sum_{m \leq n} a_{m} z^{m}
$$

so that $f(z)$ is a polynomial of degree at most $n$.
2. As $f(z)$ is an entire holomorphic function it is analytic, so that it is given by a power series

$$
f(z)=\sum_{m \in \mathbb{N}} a_{m} z^{m}
$$

with an infinite radius of convergence.
Let

$$
g(z)=f(1 / z)
$$

Then

$$
g(z)=\sum_{m \in \mathbb{N}} a_{m} z^{-m}
$$

valid for all $z \neq 0$.
By assumption we may find $n$ such that $z^{n} g(z)$ has a removable singularity, so that it is given by a power series

$$
z^{n} g(z)=\sum_{m \in \mathbb{N}} b_{m} z^{m}
$$

Comparing terms we must have $a_{n-m}=b_{m}$. Thus $a_{m}=0$ for $m>n$ and $f(z)$ is a polynomial of degree at most $n$.
3. If $f(z)$ is a polynomial then some derivative $f^{n}(z)$ is the zero function.

$$
\frac{d}{d z} e^{z}=e^{z}, \quad \frac{d}{d z} \sin z=\cos z \quad \text { and } \quad \frac{d}{d z} \cos z=-\sin z
$$

Thus $e^{z}, \cos z$ and $\sin z$ are not polynomials. But then question 2 implies that they have essential singularities at $\infty$.
4. Let $f(z)$ be a meromorphic function. Since $\mathbb{P}^{1}$ is compact and the singularities of a meromorphic function are discrete, it follows that $f(z)$ has finitely many singularities. Suppose that $f$ has poles in $\mathbb{C}$ at $a_{1}, a_{2}, \ldots, a_{k}$ of orders $n_{1}, n_{2}, \ldots, n_{k}$. Then

$$
\left(z-a_{1}\right)^{n_{1}}\left(z-a_{2}\right)^{n_{2}} \ldots\left(z-a_{k}\right)^{n_{k}} f(z)
$$

has removable singularities so that it defines an entire function $g(z)$. As $f$ has a pole at infinity so does $g(z)$. But then $g(z)$ is a polynomial by question 2 . Thus

$$
f(z)=\frac{g(z)}{\left(z-a_{1}\right)^{n_{1}}\left(z-a_{2}\right)^{n_{2}} \ldots\left(z-a_{k}\right)^{n_{k}}}
$$

is a rational function.
5. If we complete the square we get

$$
f(z)=(z+1 / 2)^{2}-1 / 4
$$

Clearly this is the same question as finding where

$$
g(z)=(z+1 / 2)^{2}
$$

is injective. We just want to determine the radius of the biggest circle where $g$ is injective.
This is the same as the largest radius of a circle centred at $1 / 2$ for which

$$
h(z)=z^{2}
$$

is injective.
$h$ is two to one. It sends the point $z=r e^{i \theta}$ and the point $z=r e^{-i \theta}$ to the same point. It is clear that the largest circle about $1 / 2$ has radius $1 / 2$, since if the radius is more than half, we include points of this form.

