
MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. Let f(z) = 6z3 and g(z) = z7 − 2z5 + 6z3 − z + 1. Then, |f(z)| = 6
on the circle |z| = 1 and

|g(z)− f(z)| ≤ |z7|+ |2z5|+ |z|+ |1| = 5 on |z| = 1.

Thus by Rouché, f and g have the same number of zeroes inside the
unit disc. But f(z) has a zero of order three at the origin and no other
zeroes. So g(z) has three zeroes in the unit disc.
2. On the circle |z| = 2, the dominant term is clearly z4. Set f(z) = z4

and g(z) = z4−6z+3. Then |f(z)| = 24 = 16 on the unit circle |z| = 2
and

|g(z)− f(z)| ≤ |6z|+ |3| ≤ 15.

As z4 has four zeroes inside the circle |z| = 2, by Rouché’s Theorem so
does g(z).
On the other hand, on the circle |z| = 1 the dominant term is 6z. Set
f(z) = 6z. Then |f(z)| = 6 on the unit circle and

|g(z)− f(z)| ≤ |z4|+ 3 = 4.

Thus, by Rouché g(z) has one zero inside the unit circle. It follows
that g(z) has three zeroes in the annulus 1 ≤ |z| ≤ 2.
3. (i) Note that as

sin−x = − sinx and sinx = sin(π − x)

we have ∫ π/2

0

dx

a+ sin2 x
=

1

4

∫ 2π

0

dx

a+ sin2 x
.

Now we use the well-known identity,

sin2 x =
1− cos 2x

2
,

to get ∫ π/2

0

dx

a+ sin2 x
=

1

2

∫ 2π

0

dx

b− cos 2x
,

where b = 2a+ 1.
Now put z = e2ix so that

cos 2x =
1

2

(
z +

1

z

)
and dz = 2izdx.
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Thus

1

2

∫ 2π

0

dx

b− cos 2x
= − i

2

∫
|z|=1

1

2z

dz

b− 1
2

(
z + 1

z

)
=
i

2

∫
|z|=1

dz

z2 − 2bz + 1
.

We calculate the last integral using the Residue Theorem. The residues
of 1

z2−2bz+1
are located at the zeroes of z2−2bz+1. Using the quadratic

formula, we see that the roots are

b±
√
b2 − 1 = 2a+ 1± 2

√
a2 + a.

Call the positive root α and the negative root β. Since |a| > 1 the
negative root β is the only one inside the unit circle. It easy to calculate
the residue at β,

R = lim
z→β

(z − β)f(z)

= lim
z→β

1

z − α

=
1

β − α

= − 1

4(a2 + a)1/2
.

Thus ∫ π/2

0

dx

a+ sin2 x
=

π

4(a2 + a)1/2
.

(ii) Let γ be the contour that goes from 0 to R, along the real axis,
describes the semi-circle from R to −R and then goes from −R to 0
and consider integrating

f(z) =
z2

z4 + 5z2 + 6
,

over this contour. Using the method of partial fractions, we have

z2

z4 + 5z + 6
=
−2

z2 + 2
+

3

z2 + 3
.

Thus the poles of f inside γ are located at the points z =
√

2i and
z =

√
3i. These are both simple poles of f , so that we can compute

the residues at these points as limits:

lim
z→
√
2i

−2

z +
√

2i
=
i
√

2

2
,
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and

lim
z→
√
3i

3

z +
√

3i
=
−i
√

3

2
.

Thus by the residue Theorem∫
γ

f(z) dz = 2πi(
i
√

2

2
+
−i
√

3

2
) = π(

√
3−
√

2).

Consider the integral around the semi-circle. We have∣∣∣∣ z2

z4 + 5z2 + 6

∣∣∣∣ ≤ R2

R4 − 5R− 6
.

Since the length of the semi-circle is πR the integral around the semi-
circle is easily seen to go to zero as R goes to infinity. As f(x) is even,
taking the limit as R→∞, it follows∫ ∞

0

x2 dx

x4 + 5x2 + 6
dx =

π

2
(
√

3−
√

2).

(iii) Let γ be the same contour as above and let

f(z) =
z2

(z2 + a2)3
.

The integral around the semi-circle is no more than

πR3

(R2 − a2)3

which goes to zero as R goes to infinity. As the integrand is an even
function of x, the integral around γ reduces, in the limit as R tends to
infinity, to twice the integral we are after. It suffices, then, to compute
the residues of f(z). Now the denominator is zero when z = ±ai. Thus
the only residue inside the contour is at ai. Unfortunately this is a pole
of order three. Note that, in general, if g(z) has a pole of order k at b,
then h(z) = (z− b)kg(z) is holomorphic and the residue of g at b is the
coefficient of (z − b)k−1 in h(z). Thus the residue of g at b is

lim
z→b

h(k−1)(z)

(k − 1)!
.

For us, we should then look at

z2

(z + ia)3
.

The first derivative is
z(2ia− z)

(z + ia)4
,
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and the second derivative is
2(ia− z)(z + ia)− 4z(2ia− z)

(z + ia)5
.

Thus the residue at z = ia is

1

2

−4(ia)2

(2ia)5
= −1

2

i

(2a)3
.

Hence ∫ ∞
0

x2 dx

(x2 + a2)3
=

π

2(2a)3
.

(iv) Here we take a contour γ that starts at ρ and goes to R, along the
x-axis, describes a semi-circle of radius R, counterclockwise, goes from
−R to −ρ and then describes a semi-circle of radius ρ. Here we take

f(z) =
log(z)

1 + z2
.

We choose a branch of the logarithm, so that the argument lies between
−π/2 and 3π/2 (so that we exclude the negative imaginary axis, x = 0,
y < 0). On the circle |z| = R, we have

|f(z)| ≤ (logR + π)

R2 − 1
.

Thus the integral around the big circle is at most

2πR
logR + π

R2 − 1

which tends to zero as R→∞. On the circle of radius ρ, the imaginary
part is bounded (it lies between 0 and π) and the real part is log ρ. As
the length of the path is 2πρ, it follows that integral around the small
semi-circle tends to zero, as ρ→ 0.
The only residue of f(z) inside the circle is at z = i. The residue here
is

log i

2i
=
π

4
.

As f(x) is even, we have by the residue Theorem

2

∫ ∞
0

(1 + x2)−1 log x dx+ α =
π2i

2
,

where α is the contribution from the two branches of the logarithm, so
that it is purely imaginary.
As the integral is purely real, it follows that the integral is zero (and

α =
π2i

2
.)
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