MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. Let $f(z)=6 z^{3}$ and $g(z)=z^{7}-2 z^{5}+6 z^{3}-z+1$. Then, $|f(z)|=6$ on the circle $|z|=1$ and

$$
|g(z)-f(z)| \leq\left|z^{7}\right|+\left|2 z^{5}\right|+|z|+|1|=5 \quad \text { on } \quad|z|=1
$$

Thus by Rouché, f and g have the same number of zeroes inside the unit disc. But $f(z)$ has a zero of order three at the origin and no other zeroes. So $g(z)$ has three zeroes in the unit disc.
2. On the circle $|z|=2$, the dominant term is clearly z^{4}. Set $f(z)=z^{4}$ and $g(z)=z^{4}-6 z+3$. Then $|f(z)|=2^{4}=16$ on the unit circle $|z|=2$ and

$$
|g(z)-f(z)| \leq|6 z|+|3| \leq 15
$$

As z^{4} has four zeroes inside the circle $|z|=2$, by Rouché's Theorem so does $g(z)$.
On the other hand, on the circle $|z|=1$ the dominant term is $6 z$. Set $f(z)=6 z$. Then $|f(z)|=6$ on the unit circle and

$$
|g(z)-f(z)| \leq\left|z^{4}\right|+3=4
$$

Thus, by Rouché $g(z)$ has one zero inside the unit circle. It follows that $g(z)$ has three zeroes in the annulus $1 \leq|z| \leq 2$.
3. (i) Note that as

$$
\sin -x=-\sin x \quad \text { and } \quad \sin x=\sin (\pi-x)
$$

we have

$$
\int_{0}^{\pi / 2} \frac{\mathrm{~d} x}{a+\sin ^{2} x}=\frac{1}{4} \int_{0}^{2 \pi} \frac{\mathrm{~d} x}{a+\sin ^{2} x}
$$

Now we use the well-known identity,

$$
\sin ^{2} x=\frac{1-\cos 2 x}{2}
$$

to get

$$
\int_{0}^{\pi / 2} \frac{\mathrm{~d} x}{a+\sin ^{2} x}=\frac{1}{2} \int_{0}^{2 \pi} \frac{\mathrm{~d} x}{b-\cos 2 x}
$$

where $b=2 a+1$.
Now put $z=e^{2 i x}$ so that

$$
\cos 2 x=\frac{1}{2}\left(z+\frac{1}{z}\right) \quad \text { and } \quad \mathrm{d} z=2 i z \mathrm{~d} x .
$$

Thus

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{2 \pi} \frac{d x}{b-\cos 2 x} & =-\frac{i}{2} \int_{|z|=1} \frac{1}{2 z} \frac{d z}{b-\frac{1}{2}\left(z+\frac{1}{z}\right)} \\
& =\frac{i}{2} \int_{|z|=1} \frac{d z}{z^{2}-2 b z+1}
\end{aligned}
$$

We calculate the last integral using the Residue Theorem. The residues of $\frac{1}{z^{2}-2 b z+1}$ are located at the zeroes of $z^{2}-2 b z+1$. Using the quadratic formula, we see that the roots are

$$
b \pm \sqrt{b^{2}-1}=2 a+1 \pm 2 \sqrt{a^{2}+a}
$$

Call the positive root α and the negative root β. Since $|a|>1$ the negative root β is the only one inside the unit circle. It easy to calculate the residue at β,

$$
\begin{aligned}
R & =\lim _{z \rightarrow \beta}(z-\beta) f(z) \\
& =\lim _{z \rightarrow \beta} \frac{1}{z-\alpha} \\
& =\frac{1}{\beta-\alpha} \\
& =-\frac{1}{4\left(a^{2}+a\right)^{1 / 2}}
\end{aligned}
$$

Thus

$$
\int_{0}^{\pi / 2} \frac{\mathrm{~d} x}{a+\sin ^{2} x}=\frac{\pi}{4\left(a^{2}+a\right)^{1 / 2}}
$$

(ii) Let γ be the contour that goes from 0 to R, along the real axis, describes the semi-circle from R to $-R$ and then goes from $-R$ to 0 and consider integrating

$$
f(z)=\frac{z^{2}}{z^{4}+5 z^{2}+6}
$$

over this contour. Using the method of partial fractions, we have

$$
\frac{z^{2}}{z^{4}+5 z+6}=\frac{-2}{z^{2}+2}+\frac{3}{z^{2}+3} .
$$

Thus the poles of f inside γ are located at the points $z=\sqrt{2} i$ and $z=\sqrt{3} i$. These are both simple poles of f, so that we can compute the residues at these points as limits:

$$
\lim _{z \rightarrow \sqrt{2} i} \frac{-2}{z+\sqrt{2} i}=\frac{i \sqrt{2}}{2}
$$

and

$$
\lim _{z \rightarrow \sqrt{3} i} \frac{3}{z+\sqrt{3} i}=\frac{-i \sqrt{3}}{2}
$$

Thus by the residue Theorem

$$
\int_{\gamma} f(z) \mathrm{d} z=2 \pi i\left(\frac{i \sqrt{2}}{2}+\frac{-i \sqrt{3}}{2}\right)=\pi(\sqrt{3}-\sqrt{2}) .
$$

Consider the integral around the semi-circle. We have

$$
\left|\frac{z^{2}}{z^{4}+5 z^{2}+6}\right| \leq \frac{R^{2}}{R^{4}-5 R-6}
$$

Since the length of the semi-circle is πR the integral around the semicircle is easily seen to go to zero as R goes to infinity. As $f(x)$ is even, taking the limit as $R \rightarrow \infty$, it follows

$$
\int_{0}^{\infty} \frac{x^{2} \mathrm{~d} x}{x^{4}+5 x^{2}+6} \mathrm{~d} x=\frac{\pi}{2}(\sqrt{3}-\sqrt{2}) .
$$

(iii) Let γ be the same contour as above and let

$$
f(z)=\frac{z^{2}}{\left(z^{2}+a^{2}\right)^{3}}
$$

The integral around the semi-circle is no more than

$$
\frac{\pi R^{3}}{\left(R^{2}-a^{2}\right)^{3}}
$$

which goes to zero as R goes to infinity. As the integrand is an even function of x, the integral around γ reduces, in the limit as R tends to infinity, to twice the integral we are after. It suffices, then, to compute the residues of $f(z)$. Now the denominator is zero when $z= \pm a i$. Thus the only residue inside the contour is at ai. Unfortunately this is a pole of order three. Note that, in general, if $g(z)$ has a pole of order k at b, then $h(z)=(z-b)^{k} g(z)$ is holomorphic and the residue of g at b is the coefficient of $(z-b)^{k-1}$ in $h(z)$. Thus the residue of g at b is

$$
\lim _{z \rightarrow b} \frac{h^{(k-1)}(z)}{(k-1)!}
$$

For us, we should then look at

$$
\frac{z^{2}}{(z+i a)^{3}}
$$

The first derivative is

$$
\frac{z(2 i a-z)}{(z+i a)^{4}}
$$

and the second derivative is

$$
\frac{2(i a-z)(z+i a)-4 z(2 i a-z)}{(z+i a)^{5}}
$$

Thus the residue at $z=i a$ is

$$
\frac{1}{2} \frac{-4(i a)^{2}}{(2 i a)^{5}}=-\frac{1}{2} \frac{i}{(2 a)^{3}}
$$

Hence

$$
\int_{0}^{\infty} \frac{x^{2} \mathrm{~d} x}{\left(x^{2}+a^{2}\right)^{3}}=\frac{\pi}{2(2 a)^{3}}
$$

(iv) Here we take a contour γ that starts at ρ and goes to R, along the x-axis, describes a semi-circle of radius R, counterclockwise, goes from $-R$ to $-\rho$ and then describes a semi-circle of radius ρ. Here we take

$$
f(z)=\frac{\log (z)}{1+z^{2}}
$$

We choose a branch of the logarithm, so that the argument lies between $-\pi / 2$ and $3 \pi / 2$ (so that we exclude the negative imaginary axis, $x=0$, $y<0$). On the circle $|z|=R$, we have

$$
|f(z)| \leq \frac{(\log R+\pi)}{R^{2}-1}
$$

Thus the integral around the big circle is at most

$$
2 \pi R \frac{\log R+\pi}{R^{2}-1}
$$

which tends to zero as $R \rightarrow \infty$. On the circle of radius ρ, the imaginary part is bounded (it lies between 0 and π) and the real part is $\log \rho$. As the length of the path is $2 \pi \rho$, it follows that integral around the small semi-circle tends to zero, as $\rho \rightarrow 0$.
The only residue of $f(z)$ inside the circle is at $z=i$. The residue here is

$$
\frac{\log i}{2 i}=\frac{\pi}{4}
$$

As $f(x)$ is even, we have by the residue Theorem

$$
2 \int_{0}^{\infty}\left(1+x^{2}\right)^{-1} \log x \mathrm{~d} x+\alpha=\frac{\pi^{2} i}{2}
$$

where α is the contribution from the two branches of the logarithm, so that it is purely imaginary.
As the integral is purely real, it follows that the integral is zero (and

$$
\left.\alpha=\frac{\pi^{2} i}{2} .\right)
$$

