PRACTICE PROBLEMS FOR THE MIDTERM

Here are some practice problems for the first midterm culled from various locations (several problems are a bit more involved than the midterm problems but are hopefully useful for review):

1. Let $f: U \longrightarrow \mathbb{C}$ be a holomorphic function. If $z_{0} \in U$ is a point such that $f^{\prime}\left(z_{0}\right) \neq 0$ then show that f preserves angles between smooth curves intersecting at z_{0}.
Find a biholomorphic map between the two regions U and V, where U is the second quadrant of the unit disc,

$$
U=\{z \in \mathbb{C}| | z \mid<1, \pi / 2<\arg (z)<\pi\}
$$

and V is the area outside the unit disc of the first quadrant:

$$
V=\{z \in \mathbb{C}| | z \mid>1,0<\arg (z)<\pi / 2\}
$$

2. Let $f(z)$ be an entire function. State Cauchy's integral formula, relating the nth derivative of f at a point a with the values of f on some circle around a.
State Liouville's theorem, and deduce it from Cauchy's integral formula.
Suppose that for some k we have that $|f(z)| \leq|z|^{k}$ for all z. Prove that f is a polynomial.
3 . What is the radius of convergence of the power series

$$
\sum_{n=1} \frac{z^{n}}{n} ?
$$

4. Find a conformal transformation $f(z)$ that maps the region

$$
U=\left\{z \in \mathbb{C} \left\lvert\, 0<\arg (z)<\frac{3 \pi}{2}\right.\right\}
$$

onto the strip

$$
V=\{z \in \mathbb{C} \mid 0<\operatorname{Im}(z)<1\} .
$$

Hence find a bounded harmonic function ϕ on U subject to the boundary conditions $\phi=0$ on $\arg z=0$ and $\phi=A$ on $\arg z=3 \pi / 2$ for some real constant A.
5. Using Cauchy's integral formula, write down the value of a holomorphic function $f(z)$ where $|z|<1$ in terms of a contour integral around the unit circle, $\zeta=e^{i \theta}$.

By considering the point $1 / \bar{z}$ show that

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\zeta) \frac{1-|z|^{2}}{|\zeta-z|^{2}} \mathrm{~d} \theta
$$

By setting $z=r e^{i \alpha}$, show that for any harmonic function $u(r, \alpha)$,

$$
u(r, \alpha)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(1, \theta) \frac{1-r^{2}}{1-2 r \cos (\alpha-\theta)+r^{2}} \mathrm{~d} \theta
$$

Assuming that the harmonic conjugate $v(r, \theta)$ can be written as

$$
v(r, \alpha)=v(0)+\frac{1}{\pi} \int_{0}^{2 \pi} u(1, \theta) \frac{r \sin (\alpha-\theta)}{1-2 r \cos (\alpha-\theta)+r^{2}} \mathrm{~d} \theta
$$

deduce that

$$
f(z)=i v(0)+\frac{1}{2 \pi} \int_{0}^{2 \pi} u(1, \theta) \frac{\zeta+z}{\zeta-z} \mathrm{~d} \theta
$$

6 . Let U be the disc centred at a with radius r and let $f: U \longrightarrow \mathbb{C}$ be a holomorphic function. Using Cauchy's integral formula, show that for every $0<s<r$,

$$
f(a)=\int_{0}^{1} f\left(a+s e^{2 \pi i t}\right) \mathrm{d} t .
$$

Deduce that if

$$
|f(z)| \leq|f(a)| \quad \text { for every } \quad z \in U
$$

then f is constant.
Now specialise to the case when $a=0$ and $r=1$, so that U is the unit disc. If $f(0)=0$ and

$$
f: U \longrightarrow U
$$

then show that

$$
|f(z)| \leq|z| \quad \text { for every } \quad z \in U .
$$

Moreover if $|f(w)|=|w|$ for some $w \neq 0$ then there exists λ with $|\lambda|=1$ such that

$$
f(z)=\lambda z \quad \text { for every } \quad z \in U
$$

