Here are some practice problems for the first midterm culled from various locations (several problems are a bit more involved than the midterm problems but are hopefully useful for review):

1. Let \(f: U \rightarrow \mathbb{C} \) be a holomorphic function. If \(z_0 \in U \) is a point such that \(f'(z_0) \neq 0 \) then show that \(f \) preserves angles between smooth curves intersecting at \(z_0 \).

Find a biholomorphic map between the two regions \(U \) and \(V \), where \(U \) is the second quadrant of the unit disc,
\[
U = \{ z \in \mathbb{C} \mid |z| < 1, \pi/2 < \arg(z) < \pi \}
\]
and \(V \) is the area outside the unit disc of the first quadrant:
\[
V = \{ z \in \mathbb{C} \mid |z| > 1, 0 < \arg(z) < \pi/2 \}.
\]

2. Let \(f(z) \) be an entire function. State Cauchy’s integral formula, relating the \(n \)th derivative of \(f \) at a point \(a \) with the values of \(f \) on some circle around \(a \).
State Liouville’s theorem, and deduce it from Cauchy’s integral formula.
Suppose that for some \(k \) we have that \(|f(z)| \leq |z|^k \) for all \(z \). Prove that \(f \) is a polynomial.

3. What is the radius of convergence of the power series
\[
\sum_{n=1}^{\infty} \frac{z^n}{n}.
\]

4. Find a conformal transformation \(f(z) \) that maps the region
\[
U = \{ z \in \mathbb{C} \mid 0 < \arg(z) < \frac{3\pi}{2} \}
\]
on to the strip
\[
V = \{ z \in \mathbb{C} \mid 0 < \text{Im}(z) < 1 \}.
\]
Hence find a bounded harmonic function \(\phi \) on \(U \) subject to the boundary conditions \(\phi = 0 \) on \(\arg z = 0 \) and \(\phi = A \) on \(\arg z = 3\pi/2 \) for some real constant \(A \).

5. Using Cauchy’s integral formula, write down the value of a holomorphic function \(f(z) \) where \(|z| < 1 \) in terms of a contour integral around the unit circle, \(\zeta = e^{i\theta} \).
By considering the point $1/z$ show that
\[f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(\zeta) \frac{1 - |z|^2}{|\zeta - z|^2} \, d\theta. \]

By setting $z = re^{i\alpha}$, show that for any harmonic function $u(r, \alpha)$,
\[u(r, \alpha) = \frac{1}{2\pi} \int_0^{2\pi} u(1, \theta) \frac{1 - r^2}{1 - 2r \cos(\alpha - \theta) + r^2} \, d\theta. \]
Assuming that the harmonic conjugate $v(r, \theta)$ can be written as
\[v(r, \alpha) = v(0) + \frac{1}{\pi} \int_0^{2\pi} u(1, \theta) \frac{r \sin(\alpha - \theta)}{1 - 2r \cos(\alpha - \theta) + r^2} \, d\theta, \]
deduce that
\[f(z) = iv(0) + \frac{1}{2\pi} \int_0^{2\pi} u(1, \theta) \frac{\zeta + z}{\zeta - z} \, d\theta. \]

6. Let U be the disc centred at a with radius r and let $f : U \to \mathbb{C}$ be a holomorphic function. Using Cauchy’s integral formula, show that for every $0 < s < r$,
\[f(a) = \int_0^1 f(a + se^{2\pi it}) \, dt. \]
Deduce that if
\[|f(z)| \leq |f(a)| \quad \text{for every} \quad z \in U, \]
then f is constant.
Now specialise to the case when $a = 0$ and $r = 1$, so that U is the unit disc. If $f(0) = 0$ and
\[f : U \to U \]
then show that
\[|f(z)| \leq |z| \quad \text{for every} \quad z \in U. \]
Moreover if $|f(w)| = |w|$ for some $w \neq 0$ then there exists λ with $|\lambda| = 1$ such that
\[f(z) = \lambda z \quad \text{for every} \quad z \in U. \]