THIRD HOMEWORK, DUE WEDNESDAY APRIL 29 TH

1. Show that if C is a smooth curve and p, q and r are smooth points of C (possibly equal) then $K_{C}+p+q$ is free, $K_{C}+p+q+r$ is very ample but that $K_{C}+p+q$ is never very ample.
2. Let X be a projective variety and let H and D be two \mathbb{Q}-Cartier divisors.
(i) If D is base point free and H is very ample divisor then show that $D+H$ is very ample.
(ii) If D is semiample and H is ample then show that $D+H$ is ample.
(iii) Using (ii), give an alternative proof of the fact that if H is ample then there is integer m_{0} such that $D+m H$ is ample for all $m \geq m_{0}$.
3. Let D be a divisor. Show that there are divisors $F \geq 0$ and M such that $D=M+F$ and

$$
|D|=|M|+F .
$$

and the base locus of M has codimension two or more. F is called the fixed divisor and M is called the mobile part of D. If M is free, show that $\phi_{|D|}: X \rightarrow \mathbb{P}^{N}$ extends to a morphism $\phi_{|M|}: X \longrightarrow \mathbb{P}^{N}$. In particular give another proof that every rational $\phi: C \longrightarrow Y$ from a smooth curve to a projective variety Y always extends to a morphism. 4. Let Y be a hypersurface of degree d in \mathbb{P}^{n+1} and let l be a line intersecting X in d points $p_{1}, p_{2}, \ldots, p_{d}$. Let $\pi: Y \longrightarrow X$ be the blow up of X along the first $d-1$ points $p_{1}, p_{2}, \ldots, p_{d-1}$ with exceptional divisors $E_{1}, E_{2}, \ldots, E_{d-1}$. Let L be the line bundle

$$
L=\mathcal{O}_{X}\left(\pi^{*} H-\sum_{i=1}^{d-1} E_{i}\right)=\mathcal{O}_{X}(D)
$$

where H is a hyperplane in \mathbb{P}^{n}.
(i) Show that L is nef and big.
(ii) Show that L is not ample if there is a line m contaned in X passing through p_{1}.
(iii) Show that the base locus of $|m L|$ is equal to p_{d}.
(iv) Show that

$$
\mathcal{O}_{X}\left(K_{X}+n D\right)=\mathcal{O}_{X}\left((d-2) \pi^{*} H-\sum_{i=1}^{d-1} E_{i}\right)
$$

has a base point at p_{d}. (In fact L is ample if X is general and d is sufficiently large).
Challenge problems:
5. Finish the proof of asymptotic Riemann Roch given in class (that is, identify the second term).

