FIFTH HOMEWORK, DUE WEDNESDAY MAY 21ST

1. Let S be a smooth surface and let ν be any valuation. Show that the \log discrepancy of ν with respect to K_{S} is at least two, with equality if and only if ν is the blow up of a point.
2. Let (X, Δ) be a \log pair of \log discrepancy at most zero. Define the anti-log discrepancy b to be the supremum of the log discrepancies of valuations of log discrepancy at most zero,

$$
b=\sup _{a(\nu, X, \Delta) \leq 0} a(\nu, X, \Delta) .
$$

Show that the anti-log discrepancy is in fact a maximum, that is, show that there is a valuation ν such that $a(\nu, X, \Delta)=b$.
3. Let (X, Δ) be a \log pair and let $D \geq 0$ be any divisor. The \log canonical threshold of D with respect to (X, Δ) is the largest real number such that $(X, \Delta+D)$ has \log discrepancy at least zero.
Let $C=C_{n}$ be the plane curve $\left(y^{2}+x^{n}=0\right) \subset \mathbb{C}^{2}$ and let $\lambda=\lambda_{n}$ be the \log canonical threshold of C with respect to $\left(\mathbb{A}^{2}, 0\right)$, so that $\left(\mathbb{A}^{2}, \lambda C\right)$ has log discrepancy zero.
(i) What is λ_{2} ?
(ii) What is λ_{3} ?
(iii) What is λ_{4} ?
(iv) Can you guess the \log canonical threshold when $C=C_{n, m}$ is the plane curve given by $y^{m}+x^{n}$?
4. Let S be a surface over \mathbb{C} which is invariant under complex conjugation (in other words, suppose that S is a surface over \mathbb{R}). Classify the K_{S}-extremal rays which are invariant under complex conjugation (in other words, classify the K_{S}-extremal rays of the real structure).

