FIFTH HOMEWORK, DUE WEDNESDAY MAY 21ST

1. Let S be a smooth surface and let ν be any valuation. Show that the log discrepancy of ν with respect to K_S is at least two, with equality if and only if ν is the blow up of a point.

2. Let (X, Δ) be a log pair of log discrepancy at most zero. Define the anti-log discrepancy b to be the supremum of the log discrepancies of valuations of log discrepancy at most zero,

$$b = \sup_{a(\nu, X, \Delta) \le 0} a(\nu, X, \Delta).$$

Show that the anti-log discrepancy is in fact a maximum, that is, show that there is a valuation ν such that $a(\nu, X, \Delta) = b$.

3. Let (X, Δ) be a log pair and let $D \ge 0$ be any divisor. The log canonical threshold of D with respect to (X, Δ) is the largest real number such that $(X, \Delta + D)$ has log discrepancy at least zero.

Let $C = C_n$ be the plane curve $(y^2 + x^n = 0) \subset \mathbb{C}^2$ and let $\lambda = \lambda_n$ be the log canonical threshold of C with respect to $(\mathbb{A}^2, 0)$, so that $(\mathbb{A}^2, \lambda C)$ has log discrepancy zero.

(i) What is λ_2 ?

(ii) What is λ_3 ?

(iii) What is λ_4 ?

(iv) Can you guess the log canonical threshold when $C = C_{n,m}$ is the plane curve given by $y^m + x^n$?

4. Let S be a surface over \mathbb{C} which is invariant under complex conjugation (in other words, suppose that S is a surface over \mathbb{R}). Classify the K_S -extremal rays which are invariant under complex conjugation (in other words, classify the K_S -extremal rays of the real structure).