
1. Classification of finitely generated field extensions

The following problem will be the main focus of these lectures:

Problem 1.1. Fix a field K.
Classify all finitely generated field extensions L/K.

We will be mostly interested in the case when K = C, which is not
to say that either the case when K is not algebraically closed or the
case when K has characeristic zero is not interesting.

Let n be the transcendence degree of L/K. The complexity of (1.1)
increases as n increases. If n = 0 then this is essentially the subject of
Galois theory (in this case, to make things interesting, we would relax
the condition that K is algebraically closed). When n > 0 it is neces-
sary to think about the whole problem in a completely different way.
Recall that a rational map φ : X 99K Y between two quasi-projective
varieties is a morphism f : U −→ Y defined on some open subset U of
X.

Definition 1.2. Let X ⊂ Pn be a quasi-projective variety over the
field K. The function field K(X)/K of X is the set of all rational
functions φ : X 99K A1.

Perhaps the most direct way to compute the function field of X is
to pick any open affine subset U of X. Then K(X)/K is simply the
field of fractions of the coordinate ring A(U).

Lemma 1.3. Let L/K be a finitely generated field extension, where K
has characteristic zero. Suppose either that K is algebraically closed or
L/K is not finite.

Then we may find a quasi-projective variety X such that the field
extension K(X)/K is isomorphic to L/K.

Proof. We may find n algebraically independent elements x1, x2, . . . , xn
of L. Let M = K(x1, x2, . . . , xn). Then M/K is a purely transcenden-
tal extension and L/M is a finite extension. By the theorem of the
primitive element (here is where we use the fact that the characteristic
is zero) there is an element xn+1 ∈ L such that L = M(xn+1). Let
m(x) ∈ M [x] be the minimum polynomial of xn+1. Then the coeffi-
cients of m are rational functions of x1, x2, . . . , xn with coefficients in
K. Clearing denominators, it follows that we can find a polynomial

f(y1, y2, . . . , yn+1) ∈ K[y1, y2, . . . , yn+1] such that f(x1, x2, . . . , xn+1) = 0.
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Let X ⊂ An+1 be the affine variety defined by f . Then the coordinate
ring of X is isomorphic to

K[y1, y2, . . . , yn+1]

〈f(y1, y2, . . . , yn+1)〉
.

It follows that the function field of X is isomorphic to L. �

Note that one can compose dominant rational maps, so that there is
a category of quasi-projective varieties and dominant rational maps.

Definition-Lemma 1.4. Let φ : X 99K Y be a dominant rational map
between two quasi-projective varieties.

Then there is a natural ring homorphism φ∗ : K(Y ) −→ K(X),
which fixes K.

Proof. If f : Y 99K A1 is a rational function then let φ∗(f) = f ◦
φ : X 99K A1. The rest is clear. �

Theorem 1.5. There is an equivalence of categories between the cate-
gory of quasi-projective varieties and dominant rational maps over K
and the category of finitely generated field extensions of K.

Proof. Define a functor by sending a quasi-projective variety X over
K to the field extension K(X)/K and sending a dominant rational
map φ : X 99K Y to the ring homomorphism φ∗ : K(Y ) 99K K(X).
We have to show that this functor is fully faithful (that is, the mor-
phisms in the two categories are the same) and that this functor is
essentially surjective. (1.3) says precisely that this functor is essen-
tially surjective. To show that the functor is fully faithful it suffices
to show that given a ring homomorphism f : K(Y ) −→ K(X) there is
a rational map φ : X 99K Y such that f = φ∗. We may assume that
X ⊂ An and Y ⊂ Am are both affine. Suppose that coordinates on Am

are y1, y2, . . . , ym. Let qi = f(yi), so that qi are rational functions of
x1, x2, . . . , xn, coordinates on An. Define a rational map

φ : X 99K Am,

by the rule

(x1, x2, . . . , xn) −→ (q1, q2, . . . , qm).

It is easy to check that φ∗ = f . �

By virtue of (1.5) we may restate (1.1) as:

Problem 1.6. Classify quasi-projective varieties up to birational equiv-
alence.
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Note that the transcendence degree n of L = K(X)/K is precisely
the dimension of X. Note also that (1.3) proves a much stronger re-
sult than stated. In fact every non-trivial field extension L/K can be
realised as the function field of an affine hypersurface. However this is
not the right way to look at all of this.

Lemma 1.7. Let φ : C 99K Y be a rational map, where C is a smooth
curve and Y ⊂ Pn is a projective variety.

Then φ extends to a morphism φ : C −→ Y .

Proof. By assumption we are given a morphism φ : U −→ Y defined on
a dense open subset U of C. Since Y ⊂ Pn is closed we may assume that
Y = Pn. The complement of U is a finite set of points p1, p2, . . . , pk.
Since this result is local about any one of these points, we may assume
that U = C − {p}.

We give a proof of this fact which is only valid over C. It is easy
to adapt this proof to the general case using the language of DVR’s.
Working analytically locally, we may assume that C = ∆ and p is the
origin. By assumption φ is given locally by a collection of meromorphic
functions fi,

z −→ [f0(z) : f1(z) : · · · : fn(z)].

Now each meromorphic function fi(z) has a Laurent expansion,
∑
ajz

j,
so that we may write

fi(z) = zmigi(z),

where each mi ∈ Z and gi(z) is a holomorphic function. Let

m = min
i

(m0,m1, . . . ,mn).

Then φ is equally well given by

z −→ [f0(z) : f1(z) : · · · : fn(z)] = [z−mf0(z) : z−mf1(z) : · · · : z−mfn(z)].

By our choice of m each
z−mfi(z),

is holomorphic and one of them is non-zero at the origin. �

Using (1.7) and (1.5) it is possible to restate (1.1) once again, in the
case when the transcendence degree n = 1 is one. The classification
of field extensions of transcendence degree one is equivalent to the
classification of smooth curves. By virtue of (1.7) the issue of rational
maps which are not morphisms does not play any role.

So now let us turn our attention to the study of smooth curves:

Definition 1.8. Let C be a projective curve. The arithmetic genus
pa of C is the dimension h1(C,OC) of H1(C,OC). The geometric
genus is the arithmetic genus of the normalisation.
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Without going into too many details (one can easily fill a whole
course on the topic of the classification of smooth curves) unfortunately
the picture is quite bad. The point is that there is a natural parameter
space for the set of all curves of genus g, called the moduli space of
curves of genus g, Mg, which is a quasi-projective variety. Mg is
natural in the following sense. The points of Mg are in bijection with
the set of isomorphism classes of smooth curves of genus g. Let

U = { [C] ∈Mg |C has only the trivial automorphism },
be the set of points [C] ∈ Mg corresponding to curves C with no
automorphisms. Then U is a dense open subset of Mg, for g ≥ 3 and
there is a universal curve over U , π : C 99K U , whose fibre π−1([C]) over
the point [C] is isomorphic to the curve C. The unfortunate aspect of
all of this is that U and hence Mg has dimension 3g − 3. A moment’s
thought will convince the reader that this means that the classification
of smooth curves is quite hard. In fact, in a sense we will make precise
later on, the general curve of genus g is essentially unknowable.
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