
10. Log resolutions

Definition 10.1. Let X be normal variety and let I ⊂ OX be an ideal
sheaf on X. We say that I is principal if X is smooth and every
point of X has a neighbourhood with coordinates x1, x2, . . . , xn so that
I is locally given by a single monomial.

We have the following celebrated result of Hironaka:

Theorem 10.2 (Principalisation of Ideals). Let M be a smooth variety
and let I be an ideal sheaf on X.

Then there is a composition of smooth blow ups π : Y −→ X along
smooth centres, with support contained in the support of OX/I, such
that π∗I is a principal ideal.

Definition 10.3. Let (X,∆) be a log pair.
We say that (X,∆) is log smooth, if the pair (X,D) has global

normal crossings (that is every irreducible component of D is smooth
and locally (in the analytic or étale topology) about any point of X,
(X,D =

∑
∆i) is isomorphic to (Cn, H1 + H2 + · · · + Hk) where

H1, H2, . . . , Hn are the coordinate hyperplanes).
A log resolution of (X,∆) is a birational morphism π : Y −→ X

such that (Y,Γ = f−1
∗ ∆ + E) is log smooth, where f−1

∗ ∆ is the strict
transform of ∆ and E is the sum of the exceptional divisors, and there
is a divisor F , supported on the exceptional locus, such that F is π-
ample.

Remark 10.4. Note that in the definition of a log resolution, we make
no requirement that the locus where π is not an isomorphism is con-
centrated over any special locus in X (such as where X is singular).

Corollary 10.5. Every log pair (X,∆) has a log resolution.

Proof. Embed X ⊂M inside a smooth variety, where X has codimen-
sion at least two. Let π : N −→ M be a birational morphism which
principalises IX ⊂ OM . Then the inverse image of X is a divisor. Then
at some stage X must have been contained in a centre of some blow
up. But the first such time this happens, the centre must be X itself.

In particular, we can resolve the singularities ofX. So replacingX by
its resolution, and ∆ by the strict transform of ∆ plus the exceptional
locus, we may assume that X is log smooth. Now apply (10.2) to
ID ⊂ OX . �

Theorem 10.6 (Elimination of indeterminancy). Let φ : X 99K Y be
a rational map between projective varieties.
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Then there are morphisms p : W −→ X and q : W −→ Y , where p is
a composition of smooth blow ups along smooth centres, W is smooth
and there is a commutative diagram

W

X
φ -

p

�
Y.

q

-

Moreover if X is smooth and y ∈ Y is in the image of the indetermi-
nancy locus of φ then there is a non-constant morphism f : P1 −→ Y
such that f(0) = y.

Proof. Pick an embedding of Y ⊂ Pn into projective space and let H be
a hyperplane section. Let φ∗H = M +F be the decomposition of φ∗H
into its fixed and mobile parts. Then the linear system |M | defines φ.
Let B the scheme theoretic base locus of |M |. Then B = 0 if and only
if φ is a morphism (or perhaps better, extends to a morphism). Note
that the codimension of B is at least two.

Let IB be the ideal sheaf of B. Let p : X −→ Y be the birational
morphism, whose existence is guaranteed by (10.2). Let q : W 99K Y be
the induced rational map. Then q∗H = M1 + F1 is the decomposition
of q∗H into its mobile and fixed parts, where F1 = p∗B and M1 =
p∗M − F1. But then |M1| is base point free, so that q is a morphism.

Let V ⊂ X be the indeterminancy locus of φ, and let Z = qp−1(V ).
If x ∈ V , them the qp−1(x) is positive dimensional. Since the image
of a rationally chain connected variety is rationally chain connected
it suffices to prove that the fibres of p are rationally chain connected.
We prove this by induction on the number of blow ups. Suppose that
p factors as p1 : W1 −→ X and π : W −→ W1, where π is a smooth
blow up of B ⊂ W1. By induction the fibres of p1 are rationally chain
connected. Let E1 ⊂ W be the intersection of the exceptional divisor E
with a fibre of p and let B1 ⊂ W1 be the image of E1. Then the fibres
of E1 over B1 are projective spaces, which are rationally connected.
If f1 and f2 are two points of two fibres F1 and F2 then pick x1 and
x2 belonging to the fibres and the strict transform G of B1. Then we
can find a rational curve connecting f1 to x1 in F1, a chain of rational
curves connecting x1 to x2 in G and a rational curve connecting x2 to
f2 in F2. The resulting chain connects f1 to f2 in the fibre E1. �

To get some idea of the proof of (10.6), consider the case of smooth
projective surfaces. To emphasize this point, we change notation and
consider φ : S 99K Y , where S is a smooth projective surface. As M is
mobile it is nef (here is one important place where we use the fact that
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S is a surface). We proceed by induction on d = M2 ≥ 0. Suppose
that φ is not defined at x ∈ |M |. Then x is a base point of |M |. Let
π : S1 −→ S be the blow up. Let φ1 : S1 99K Y be the induced rational
map. If φ1 is given by M1, then

M1 = π∗M −mE,
where m > 0 is a positive integer (in fact π∗M = M1 + mE gives the
decomposition into fixed and mobile parts). Now

M2
1 = (π∗M −mE)2 = d−m2 < d.

Thus we are done by induction on d.
Let X = C3 and let X1 be the blow up of the origin of X. The

exceptional divisor is then a copy of P2. Let X2 be the blow up of X1

along an smooth cubic in the exceptional divisor. Then the exceptional
locus is a copy E of P2 joined to a P1-bundle F over an elliptic curve,
joined along a section and a cubic. Then E ∪ F is a rationally chain
connected variety, and yet F is not rationally connected. To connect
two points of F , f1 and f2, let F1 and F2 be the two fibres which contain
them. Now let x1 and x2 be the points in E which meets these two
fibres. Let l be the line connecting x1 to x2. Then F1 ∪ l∪F2 connects
f1 to f2.

Example 10.7. Let

X = C × P2 ∪ P2 × C ⊂ P2 × P2.

Then X is rationally chain connected, but neither component is ratio-
nally connected.

3


	10. Log resolutions

