11. The log discrepancy

Definition 11.1. Let (X, Δ) be a log pair. If $\pi: Y \longrightarrow X$ is any birational morphism such that $K_{Y}+\Gamma$ is \mathbb{Q}-Cartier, and $E_{1}, E_{2}, \ldots, E_{k}$ are the exceptional divisors, then we may write

$$
K_{Y}+\Gamma=K_{X}+\pi_{*}^{-1} \Delta+E=\pi^{*}\left(K_{X}+\Delta\right)+\sum a_{i} E_{i}
$$

for rational numbers $a_{1}, a_{2}, \ldots, a_{k}$, where $\pi_{*}^{-1} \Delta$ is the strict transform of Δ and $E=\sum E_{i}$ is the sum of the exceptional divisors. The number $a_{i}=a\left(E_{i}, X, \Delta\right)$ is called the \log discrepancy of the divisor E_{i}.

The log discrepancy $a=a(X, \Delta)$ of (X, Δ) is the infimum of the log discrepancies over all exceptional divisors of all birational morphisms.

Note that it is not necessary to assume that $\Delta \geq 0$ to define the \log discrepancy. We only need that X is normal and $K_{X}+\Delta$ is \mathbb{Q}-Cartier.

We run through one computation of the \log discrepancy. Let X be the cone over a rational normal curve of degree d. If we blow up $\pi: Y \longrightarrow X$ the vertex of the cone then π is a \log resolution and the exceptional divisor E is a copy of $\mathbb{P}^{1} ; E^{2}=-d$. We may write

$$
K_{T}+E=\pi^{*} K_{S}+a E,
$$

for some rational number a. If we do both sides with respect to E we get

$$
-2=\operatorname{deg} K_{\mathbb{P}^{1}}=\operatorname{deg} K_{E}=\left(K_{T}+E\right) \cdot E=\pi^{*} K_{S} \cdot E+a E^{2}=-a d
$$

Thus

$$
a=\frac{2}{d}
$$

Definition 11.2. Let K / k be a field extension. A valuation ν of K / k is a map

$$
\nu: K \longrightarrow \mathbb{Z} \cup\{\infty\}
$$

such that
(1) $\nu(f)=\infty$ if and only if $f=0$.
(2) $\nu(f g)=\nu(f)+\nu(g)$.
(3) $\nu(f+g) \geq \max (\nu(f), \nu(g))$.
(4) $\nu\left(k^{*}\right)=\{0\}$.

Example 11.3. Let X be a normal projective variety and let $D \subset X$ be a prime divisor. Then the order of vanishing of a rational function along D determines a valuation,

$$
\nu_{D}(f)=\operatorname{mult}_{f} D
$$

If ν is a valuation such that $\nu=\nu_{E}$ for some divisor E, possibly exceptional, then we will call ν an algebraic valuation. The centre of ν is the image of E in X.

The language of valuations provides a convenient way to refer to the same exceptional divisors, on different models. Note that if $E_{1} \subset Y_{1}$ and $E_{2} \subset Y_{2}$ are two divisors on birational varieties Y_{1} and Y_{2}, then $\nu_{E_{1}}=\nu_{E_{2}}$ if and only if there is a birational map $\phi: Y_{1} \rightarrow Y_{2}$ which is an isomorphism in a neighbourhood of the generic points of E_{1} and E_{2}.

The \log discrepancy is a birational invariant, in the following weak sense:

Lemma 11.4. Let (X, Δ) be a log pair and let ν be a valuation.
The log discrepancy only depends on ν.
Proof. Suppose that we are given $\pi_{i}: Y_{i} \longrightarrow X$ two birational morphisms on which the centre of ν_{i} is a divisor E_{i}. If $\phi: Y_{1} \rightarrow Y_{2}$ is the induced birational map then ϕ is an isomorphism at the generic point of E_{1}. We may write

$$
K_{Y_{i}}+\Gamma_{i}=\pi_{i}^{*}\left(K_{X}+\Delta\right)+a_{i} E_{i}+J_{i}
$$

where J_{i} does not involve E_{i} and we want to show that $a_{1}=a_{2}$. Pick a meromorphic differential form ω_{2} on Y_{2} and let $\omega_{1}=\phi^{*} \omega_{2}$. Then

$$
a_{i}=1-\operatorname{mult}_{E_{i}} \pi_{i}^{*}\left(K_{X}+\Delta\right)+\operatorname{mult}_{E_{i}} \omega_{i}
$$

which is independent of i by construction.
Definition 11.5. We say that a log pair (X, Δ) is canonical if the log discrepancy is at least one.

Lemma 11.6. Let $\phi: X \rightarrow Y$ be a birational map between two projective varieties with canonical singularities and let m be a positive integer, such that both $m K_{X}$ and $m K_{Y}$ are Cartier.

Then there is a natural isomorphism

$$
H^{0}\left(X, \mathcal{O}_{X}\left(m K_{X}\right)\right) \simeq H^{0}\left(Y, \mathcal{O}_{X}\left(m K_{Y}\right)\right)
$$

Proof. Let $p: W \longrightarrow X$ and $q: W \longrightarrow Y$ be a common resolution of ϕ. Then we just have to prove the result for p and q. Replacing ϕ by p we may assume that ϕ is a morphism, a \log resolution of X.

Let V the indeterminancy locus of ϕ^{-1}. Suppose that ω is a pluricanonical form on X. Then $\eta=\phi_{*} \omega$ is a rational form on Y whose poles are concentrated on V, which is a closed subset of codimension at least two. But then η is in fact regular. Thus there is a natural map

$$
H^{0}\left(X, \mathcal{O}_{X}\left(m K_{X}\right)\right) \underset{2}{\longrightarrow} H^{0}\left(Y, \mathcal{O}_{Y}\left(m K_{Y}\right)\right)
$$

Conversely suppose that η is a pluricanonical form on Y. By assumption,

$$
K_{X}=\pi^{*} K_{Y}+E,
$$

where $E \geq 0$ is exceptional. Then

$$
\begin{aligned}
\pi^{*} \eta & \in H^{0}\left(X, \mathcal{O}_{X}\left(m \pi^{*} K_{Y}\right)\right) \\
& \subset H^{0}\left(X, \mathcal{O}_{X}\left(m \pi^{*} K_{Y}+m E\right)\right) \\
& =H^{0}\left(X, \mathcal{O}_{X}\left(m K_{X}\right)\right)
\end{aligned}
$$

Lemma 11.7. Let $\pi: X \longrightarrow Y$ blow up a smooth variety V of codimension k, with exceptional divisor E.

Then the log discrepancy of E is equal to k.
Proof. We have

$$
K_{X}+E=\pi^{*} K_{Y}+a E,
$$

where a is the \log discrepancy. Restricting to E, we have

$$
K_{E}=\left.\left(K_{X}+E\right)\right|_{E}=\left.\pi^{*} K_{Y}\right|_{E}+\left.a E\right|_{E}=\left.a E\right|_{E} .
$$

Let F be a general fibre. Restricting to F, we have

$$
-k H=K_{\mathbb{P}^{k-1}}=K_{F}=\left.a E\right|_{F}=-a H,
$$

where H is the class of a hyperplane. But then $a=k$.
Lemma 11.8. Let $\left(X, \Delta=\sum a_{i} \Delta_{i}\right)$ be a log smooth pair, where we allow some of the coefficients of Δ to be negative.

If Δ has a component of coefficient greater than one, then set $a=$ $-\infty$. Otherwise, let

$$
a=\min _{Z}\left(k-\sum a_{i}\right),
$$

where Z ranges over the irreducible components of the strata of the support of Δ, k is the codimension of Z and we sum over those components of Δ which contain Z.

Then the log discrepancy of $K_{X}+\Delta$ is a. In particular the log discrepancy of any pair is either at least zero, or it is $-\infty$ and if X is smooth and $\Delta=0$ then X is canonical.

Proof. Suppose that Δ has a component C of coefficient $1+\epsilon$, where $\epsilon>0$. We are going to successively blow up X along a general smooth codimension two subset of C. Thus we might as well suppose that $S=X$ is a smooth surface and $\Delta=(1+\epsilon) C$, where C is a smooth curve. Suppose that we blow up $\pi: T \longrightarrow S$ the point $p \in C$, with exceptional divisor E. As the \log discrepancy of E with respect to K_{S} is 2 , we have

$$
K_{T}+E=\underset{3}{\pi^{*}} K_{S}+2 E
$$

where E is the exceptional divisor. Let D be the strict transform of C. As $\pi^{*} C=D+E$, it follows that

$$
K_{T}+(1+\epsilon) D+E=\pi^{*}\left(K_{S}+(1+\epsilon) C\right)+(1-\epsilon) E .
$$

The \log discrepancy of E is then $1-\epsilon$. On the other hand,

$$
K_{T}+(1+\epsilon) D+\epsilon E=\pi^{*}\left(K_{S}+(1+\epsilon) C\right) .
$$

Note that D and E are now two smooth curves, intersecting transversally at a smooth point, where D has coefficient $1+\epsilon$ and E has coefficient ϵ. Now suppose that we blow up the intersection of D and E on T. Mutatis mutandis, a similar calculation shows that the exceptional divisor E_{1} has \log discrepancy $1-2 \epsilon$ with respect to $K_{T}+(1+\epsilon) D+\epsilon E$ and so also with respect to $K_{S}+(1+\epsilon) C$. Moreover now we have two smooth curves intersecting transversally at a point, one with coefficient 2ϵ the other with coefficient $1+\epsilon$. If we blow up the intersection point, then we get an exceptional divisor with log discrepancy $1-3 \epsilon$ and so on. Continuing in this way we get exceptional divisors of log discrepancy $1-k \epsilon$, for all $k \geq 0$. Thus the \log discrepancy is $-\infty$.

Now suppose that Δ is a boundary. If we blow up Z, with exceptional divisor E, then we have

$$
K_{Y}+E=\pi^{*} K_{X}+k E
$$

since the \log discrepancy is k. Since

$$
\pi_{*}^{-1} \Delta+\left(\sum a_{i}\right) E=\pi^{*} \Delta
$$

it follows that E has \log discrepancy $k-\sum a_{i}$ with respect to $K_{X}+\Delta$.
Finally suppose that ν is some algebraic valuation. By (10.6), we may realise ν by blowing up smooth centres which intersect the support of Δ transversally. If we rewrite the equation above as

$$
K_{Y}+\pi_{*}^{-1} \Delta+\left(\sum a_{i}+1-k\right) E=\pi^{*}\left(K_{X}+\Delta\right)
$$

and observe that
$\sum a_{i}+1-k=\left(a_{1}-1\right)+\cdots+\left(a_{i}-1\right)+a_{i}+\left(a_{i+1}-1\right)+\cdots+\left(a_{k}-1\right) \leq \min a_{i}$,
since we are assuming that $a_{i} \leq 1$, it is easy to see that the \log discrepancy is computed after one blow up.
Proof of (9.2). We will only show that the plurigenera are birational invariants; a similar argument applies to the irregularity $q(X)$. By (11.8) it follows that X and Y are canonical and we may apply (11.6).

