
12. Classification of Surfaces

The key to the classification of surfaces is the behaviour of the canon-
ical divisor.

Definition 12.1. We say that a smooth projective surface is minimal
if KS is nef.

Warning: This is not the classical definition of a minimal surface.

Definition 12.2. Let S be a smooth projective surface. We say that a
curve C ⊂ S is a −1-curve if

KS · C = C2 = −1.

Theorem 12.3 (Cone Theorem). Let S be a smooth projective surface.
Then there are countably many extremal rays R1, R2, . . . of the closed

cone of curves of S on which KS is negative, such that

NE(S) = NE(S)KX≥0 +
∑

Ri.

Further, if R = Ri is any one of these KS-extremal rays then there is a
birational morphism π : S −→ Z which contracts a curve C if and only
if C spans the ray R. There are three possibilities:

(1) Z is a point and S ' P2.
(2) π : S −→ Z is a P1-bundle over a smooth curve Z.
(3) π : S −→ Z is a birational morphism contracting a −1-curve

C, where Z is a smooth surface.

In particular the relative Picard number of π is one, each extremal
ray Ri is spanned by a rational curve and if H is any ample divisor,
there are only finitely many extremal rays Ri such that (KX+H)·R < 0.

Remark 12.4. The last two statements are sometimes informally stated
as saying that the closed cone of curves is locally rational polyhedral on
the KS-negative side of the cone.

Theorem 12.5 (Castelnuovo). Let S be a smooth projective surface
and let C ⊂ S be a curve.

Then C is a −1-curve if and only if there is birational morphism
π : S −→ T , which blows up a smooth point p ∈ T , with exceptional
divisor C.

Theorem 12.6 (Abundance). Let S be a smooth projective surface.
Then KS is nef if and only if KS is semiample.

Theorem 12.7 (Kodaira-Enriques). Let T be a smooth projective sur-
face, with invariants κ = κ(T ), pg = pg(T ) and q = q(T ). Then T is
birational to a surface S which falls into the following list:
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κ = −∞:
Ruled surface S ' P1 × B where B is a smooth curve of genus q(S) =

g(B).
κ = 0:

Abelian surface pg = 1, q = 2. S ' C2/Λ.

Bielliptic pg = 0, q = 1. There is a Galois cover of S̃ −→ S of

order at most 12 such that S̃ ' E×F , where E and F are
elliptic curves.

K3 surface pg = 1, q = 0.

Enriques surface pg = 0, q = 0. There is an étale cover S̃ −→ S of order

two, such that S̃ is a K3-surface.
κ = 1:

Elliptic fibration there is a contraction morphism π : S −→ B with general
fibre a smooth curve of genus one. Pm(S) > 0 for all m
divisible by 12.

κ = 2:
General type φm is birational for all m ≥ 5. In particular Pm(X) > 0

for all m ≥ 5.

In particular κ ≥ 0 if and only if P12 ≥ 0.

Definition 12.8. Let X be a normal projective variety, let D be a nef
divisor and let E be any divisor. The nef threshold is the largest
multiple of E we can add to D, whilst preserving the nef condition:

λ = sup{ t ∈ R |D + tE is nef }.

Definition 12.9. Let X be a projective scheme and let D be a nef divi-
sor. The numerical dimension ν(X,D) of D is the largest positive
integer such that Dk ·Hn−k > 0, where H is an ample divisor.

Note that if D is semiample then κ(D) = ν(D). We will need the
following easy:

Lemma 12.10. Let X be a normal projective variety and let D be a
nef Q-Cartier divisor.

(1) If ν(D) = 0 then D is semiample if and only if κ(D) = 0.
(2) If ν(D) = 1 then D is semiample if and only if h0(X,OX(mD)) ≥

2, for some m > 0.

In particular if ν(D) ≤ 1 then D is semiample if and only if ν(D) =
κ(D).

Proof. Suppose that ν(D) = 0. Then D is numerically trivial and it is
semiample if and only if it is torsion. As κ(D) = 0, D ∼Q B ≥ 0 and
since B is numerically trivial, in fact B = 0.
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Suppose that ν(D) = 1. Pick m so that |mD| contains a pencil. We
may as well assume that m = 1. We may decompose this linear system
into mobile and fixed part:

|D| = |M |+ F.

Let Bi ∈ |D|, B1 6= B2. Then we may write Bi = Ci + F . By
assumption D is not numerically trivial but

0 = D2 ·Hn−2 = (C1 + F ) ·D ·Hn−2 ≥ C1 ·D ·Hn−2.

As C1 moves we must have

C1 · C2 ·Hn−2 = 0 and C1 · F ·Hn−2 = 0.

In particular C1 ∩ C2 = ∅. Thus |M | is base point free and we get a
morphism X −→ P1. Let f : X −→ Σ be the Stein factorisation. By
assumption C1 and C2 are two different fibres. We have C1 ∩ F = ∅.
Thus F is supported on the fibres of f . As it is Cartier and nef, it
must be a multiple of a fibre. But then F is semiample and so D is
semiample. �

Definition 12.11. Let π : X −→ U be a projective morphism.
The relative cone of curves is the cone generated by the classes

of all curves contracted by π,

NE(X/U) = {α ∈ NE(X) |π∗α = 0 }.
We say that a Q-Cartier divisor H is π-ample (aka relatively am-
ple, aka ample over U) if mH is relatively very ample (that is,
there is an embedding i of X into Pn

U = Pn × U over U such that
OX(mH) = i∗O(1)).

We say that an R-divisor is relatively ample if and only if it is a
positive linear combination of relatively ample Q-divisors.

Note that if U is projective, then H is relatively ample if and only
if there is an ample divisor G on U , such that H + π∗G is ample.
Note also that an R-divisor is relatively ample if and only if it defines
a positive linear functionall on NE(X/U) − {0}. Note that many of
the definitions for Q-divisors extend to R-divisors. In particular, the
property of being nef and the numerical dimension.

Proof of (12.3). Pick an extremal ray R = R+α of the closed cone of
curves. We may pick an ample R-divisor H such that

(KS +H) · β ≥ 0,

for all β ∈ NE(S) with equality if and only if R = R+β. In particular
D = KS + H is a nef R-Cartier divisor. The key technical point is to
establish that R is rational, so that we may choose H to be an ample
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Q-divisor. In fact we will prove much more, we will prove that R is
spanned by a curve. Let ν = ν(S,D). There are three cases:

• ν = 0,
• ν = 1, and
• ν = 2.

If ν = 0, then KS +H is numerically trivial, and −KS is numerically
equivalent to H. In other words −KS is ample. Moreover every curve
C spans R. Thus S is a Fano surface of Picard number one and it
follows that S ' P2. Note that R is rational in this case.

If ν = 1, then we will defer the proof that R is rational. So assume
that H is rational. We first prove that D is semiample. Consider
asymptotic Riemann-Roch. D2 = 0, by assumption.

D · (−KS) = D ·H > 0,

also by assumption. Thus χ(X,OX(mD)) grows linearly. Since

h2(S,OS(mD)) = h0(S,OS(KS −mD)) = 0,

for m sufficiently large, it follows that there is a positive integer m > 0
such that |mD| contains a pencil. By (12.10) it follows that D is
semiample. Let F by the general fibre of the corresponding morphism
π : S −→ C. Then F is a smooth irreducible curve, F 2 = 0 and
−KS · F > 0. By adjunction,

0 > (KS + F ) · F = KF = 2g − 2.

It follows that g = 0 so that F ' P1. Moreover since R = R+[F ]
is extremal, the relative Picard number is one and so there are no
reducible fibres. By direct classification it follows that there are no
singular fibres. Thus π is a P1-bundle.

If ν = 2 then D is big but not ample. As D is nef D2 > 0. By
continuity there is an ample Q-divisor G such that (KS +G)2 > 0 and
(KS + G) · G > 0, where H − G is ample. Thus KS + G is big. By
Kodaira’s Lemma, KS + G ∼Q A + E, where A is ample and E ≥ 0.
Now

(KS +G) · α = D · α− (H −G) · α < 0.

On the other hand

0 > D · α = A · α + E · α > E · α.
It follows that α is spanned by a component of E so that R = R+[C],
for some component C of E. In particular R is rational and we may
choose H to be a Q-divisor. We have

0 > (KS + C) · C = KC = 2g − 2.
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Thus g = 0 and C is a −1-curve.
Replacing H by a multiple, we may assume that H is very ample

(for the time being, we only need that it is Cartier) and KS + H is
ample. Suppose that H · C = m > 0. We may always assume that
m > 1 (simply replace H by a multiple). If G = H + (m − 2)C, then
G is big and it is nef, since G · C = 2. In particular G is ample by
Nakai-Moishezon. Let D = KS + C +G. Since we may write

D = (KS +H) + C,

the stable base locus of D is contained in C. In particular for every
curve Σ ⊂ S,

D · Σ ≥ 0,

with equality if and only if Σ = C. There is an exact sequence

0 −→ OS(D − C) −→ OS(D) −→ OC(D) −→ 0.

Now OC(D) = OC , since D|C is a divisor of degree zero on P1. On the
other hand,

H1(S,OS(D − C)) = H1(S,OS(KS +G)) = 0,

by Kodaira vanishing. Thus there are no base points of D on C, so that
D is semiample, and the resulting morphism π : S −→ Z contracts C.

It remains to prove that Z is smooth. Consider the ample divisor
KS +G. We may always pick H very ample. In this case, I claim that
KS + G is base point free (in fact it is very ample). The base locus is
supported on C. Consider the exact

0 −→ OS(KS +G− C) −→ OS(KS +G) −→ OC(KS +G) −→ 0.

Then OC(KS +G) ' OP1(1). As before,

H1(S,OS(KS +H + (m− 3)C) = 0,

by Kodaira vanishing. Thus KS +G is base point free. Pick a general
curve Σ′ ∈ |KS + G|. Then this must intersect C transversally at a
single smooth point. But then Σ = π∗Σ

′ is a smooth curve in Z. On
the other hand Σ + C ∈ |D|. Since |D| defines the contraction, the
image of Σ + C, which is again Σ′ is Cartier.

But any variety which contains a smooth Cartier divisor, is smooth
in a neighbourhood of the divisor. Thus Z is smooth. �
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