12. Classification of Surfaces

The key to the classification of surfaces is the behaviour of the canonical divisor.

Definition 12.1. We say that a smooth projective surface is minimal if K_{S} is nef.

Warning: This is not the classical definition of a minimal surface.
Definition 12.2. Let S be a smooth projective surface. We say that a curve $C \subset S$ is a-1-curve if

$$
K_{S} \cdot C=C^{2}=-1
$$

Theorem 12.3 (Cone Theorem). Let S be a smooth projective surface.
Then there are countably many extremal rays R_{1}, R_{2}, \ldots of the closed cone of curves of S on which K_{S} is negative, such that

$$
\overline{\mathrm{NE}}(S)=\overline{\mathrm{NE}}(S)_{K_{X} \geq 0}+\sum R_{i} .
$$

Further, if $R=R_{i}$ is any one of these K_{S}-extremal rays then there is a birational morphism $\pi: S \longrightarrow Z$ which contracts a curve C if and only if C spans the ray R. There are three possibilities:
(1) Z is a point and $S \simeq \mathbb{P}^{2}$.
(2) $\pi: S \longrightarrow Z$ is a \mathbb{P}^{1}-bundle over a smooth curve Z.
(3) $\pi: S \longrightarrow Z$ is a birational morphism contracting a-1-curve C, where Z is a smooth surface.
In particular the relative Picard number of π is one, each extremal ray R_{i} is spanned by a rational curve and if H is any ample divisor, there are only finitely many extremal rays R_{i} such that $\left(K_{X}+H\right) \cdot R<0$.

Remark 12.4. The last two statements are sometimes informally stated as saying that the closed cone of curves is locally rational polyhedral on the K_{S}-negative side of the cone.

Theorem 12.5 (Castelnuovo). Let S be a smooth projective surface and let $C \subset S$ be a curve.

Then C is a-1-curve if and only if there is birational morphism $\pi: S \longrightarrow T$, which blows up a smooth point $p \in T$, with exceptional divisor C.

Theorem 12.6 (Abundance). Let S be a smooth projective surface.
Then K_{S} is nef if and only if K_{S} is semiample.
Theorem 12.7 (Kodaira-Enriques). Let T be a smooth projective surface, with invariants $\kappa=\kappa(T)$, $p_{g}=p_{g}(T)$ and $q=q(T)$. Then T is birational to a surface S which falls into the following list:

$$
\kappa=-\infty:
$$

Ruled surface $S \simeq \mathbb{P}^{1} \times B$ where B is a smooth curve of genus $q(S)=$ $g(B)$.

$$
\kappa=0:
$$

Abelian surface $p_{g}=1, q=2 . S \simeq \mathbb{C}^{2} / \Lambda$.
Bielliptic $p_{g}=0, q=1$. There is a Galois cover of $\tilde{S} \longrightarrow S$ of order at most 12 such that $\tilde{S} \simeq E \times F$, where E and F are elliptic curves.
K3 surface $p_{g}=1, q=0$.
Enriques surface $p_{g}=0, q=0$. There is an étale cover $\tilde{S} \longrightarrow S$ of order two, such that \tilde{S} is a K3-surface.

$$
\kappa=1:
$$

Elliptic fibration there is a contraction morphism $\pi: S \longrightarrow B$ with general fibre a smooth curve of genus one. $P_{m}(S)>0$ for all m divisible by 12.

$$
\kappa=2:
$$

General type ϕ_{m} is birational for all $m \geq 5$. In particular $P_{m}(X)>0$ for all $m \geq 5$.
In particular $\kappa \geq 0$ if and only if $P_{12} \geq 0$.
Definition 12.8. Let X be a normal projective variety, let D be a nef divisor and let E be any divisor. The nef threshold is the largest multiple of E we can add to D, whilst preserving the nef condition:

$$
\lambda=\sup \{t \in \mathbb{R} \mid D+t E \text { is nef }\}
$$

Definition 12.9. Let X be a projective scheme and let D be a nef divisor. The numerical dimension $\nu(X, D)$ of D is the largest positive integer such that $D^{k} \cdot H^{n-k}>0$, where H is an ample divisor.

Note that if D is semiample then $\kappa(D)=\nu(D)$. We will need the following easy:

Lemma 12.10. Let X be a normal projective variety and let D be a nef \mathbb{Q}-Cartier divisor.
(1) If $\nu(D)=0$ then D is semiample if and only if $\kappa(D)=0$.
(2) If $\nu(D)=1$ then D is semiample if and only if $h^{0}\left(X, \mathcal{O}_{X}(m D)\right) \geq$ 2 , for some $m>0$.
In particular if $\nu(D) \leq 1$ then D is semiample if and only if $\nu(D)=$ $\kappa(D)$.

Proof. Suppose that $\nu(D)=0$. Then D is numerically trivial and it is semiample if and only if it is torsion. As $\kappa(D)=0, D \sim_{\mathbb{Q}} B \geq 0$ and since B is numerically trivial, in fact $B=0$.

Suppose that $\nu(D)=1$. Pick m so that $|m D|$ contains a pencil. We may as well assume that $m=1$. We may decompose this linear system into mobile and fixed part:

$$
|D|=|M|+F
$$

Let $B_{i} \in|D|, B_{1} \neq B_{2}$. Then we may write $B_{i}=C_{i}+F$. By assumption D is not numerically trivial but

$$
0=D^{2} \cdot H^{n-2}=\left(C_{1}+F\right) \cdot D \cdot H^{n-2} \geq C_{1} \cdot D \cdot H^{n-2}
$$

As C_{1} moves we must have

$$
C_{1} \cdot C_{2} \cdot H^{n-2}=0 \quad \text { and } \quad C_{1} \cdot F \cdot H^{n-2}=0
$$

In particular $C_{1} \cap C_{2}=\varnothing$. Thus $|M|$ is base point free and we get a morphism $X \longrightarrow \mathbb{P}^{1}$. Let $f: X \longrightarrow \Sigma$ be the Stein factorisation. By assumption C_{1} and C_{2} are two different fibres. We have $C_{1} \cap F=\varnothing$. Thus F is supported on the fibres of f. As it is Cartier and nef, it must be a multiple of a fibre. But then F is semiample and so D is semiample.

Definition 12.11. Let $\pi: X \longrightarrow U$ be a projective morphism.
The relative cone of curves is the cone generated by the classes of all curves contracted by π,

$$
\overline{\mathrm{NE}}(X / U)=\left\{\alpha \in \mathrm{NE}(X) \mid \pi_{*} \alpha=0\right\}
$$

We say that $a \mathbb{Q}$-Cartier divisor H is π-ample (aka relatively ample, aka ample over U) if $m H$ is relatively very ample (that is, there is an embedding i of X into $\mathbb{P}_{U}^{n}=\mathbb{P}^{n} \times U$ over U such that $\left.\mathcal{O}_{X}(m H)=i^{*} \mathcal{O}(1)\right)$.

We say that an \mathbb{R}-divisor is relatively ample if and only if it is a positive linear combination of relatively ample \mathbb{Q}-divisors.

Note that if U is projective, then H is relatively ample if and only if there is an ample divisor G on U, such that $H+\pi^{*} G$ is ample. Note also that an \mathbb{R}-divisor is relatively ample if and only if it defines a positive linear functionall on $\overline{\mathrm{NE}}(X / U)-\{0\}$. Note that many of the definitions for \mathbb{Q}-divisors extend to \mathbb{R}-divisors. In particular, the property of being nef and the numerical dimension.
Proof of (12.3). Pick an extremal ray $R=\mathbb{R}^{+} \alpha$ of the closed cone of curves. We may pick an ample \mathbb{R}-divisor H such that

$$
\left(K_{S}+H\right) \cdot \beta \geq 0
$$

for all $\beta \in \overline{\mathrm{NE}}(S)$ with equality if and only if $R=\mathbb{R}^{+} \beta$. In particular $D=K_{S}+H$ is a nef \mathbb{R}-Cartier divisor. The key technical point is to establish that R is rational, so that we may choose H to be an ample
\mathbb{Q}-divisor. In fact we will prove much more, we will prove that R is spanned by a curve. Let $\nu=\nu(S, D)$. There are three cases:

- $\nu=0$,
- $\nu=1$, and
- $\nu=2$.

If $\nu=0$, then $K_{S}+H$ is numerically trivial, and $-K_{S}$ is numerically equivalent to H. In other words $-K_{S}$ is ample. Moreover every curve C spans R. Thus S is a Fano surface of Picard number one and it follows that $S \simeq \mathbb{P}^{2}$. Note that R is rational in this case.

If $\nu=1$, then we will defer the proof that R is rational. So assume that H is rational. We first prove that D is semiample. Consider asymptotic Riemann-Roch. $D^{2}=0$, by assumption.

$$
D \cdot\left(-K_{S}\right)=D \cdot H>0,
$$

also by assumption. Thus $\chi\left(X, \mathcal{O}_{X}(m D)\right)$ grows linearly. Since

$$
h^{2}\left(S, \mathcal{O}_{S}(m D)\right)=h^{0}\left(S, \mathcal{O}_{S}\left(K_{S}-m D\right)\right)=0
$$

for m sufficiently large, it follows that there is a positive integer $m>0$ such that $|m D|$ contains a pencil. By 12.10 it follows that D is semiample. Let F by the general fibre of the corresponding morphism $\pi: S \longrightarrow C$. Then F is a smooth irreducible curve, $F^{2}=0$ and $-K_{S} \cdot F>0$. By adjunction,

$$
0>\left(K_{S}+F\right) \cdot F=K_{F}=2 g-2
$$

It follows that $g=0$ so that $F \simeq \mathbb{P}^{1}$. Moreover since $R=\mathbb{R}^{+}[F]$ is extremal, the relative Picard number is one and so there are no reducible fibres. By direct classification it follows that there are no singular fibres. Thus π is a \mathbb{P}^{1}-bundle.

If $\nu=2$ then D is big but not ample. As D is nef $D^{2}>0$. By continuity there is an ample \mathbb{Q}-divisor G such that $\left(K_{S}+G\right)^{2}>0$ and $\left(K_{S}+G\right) \cdot G>0$, where $H-G$ is ample. Thus $K_{S}+G$ is big. By Kodaira's Lemma, $K_{S}+G \sim_{\mathbb{Q}} A+E$, where A is ample and $E \geq 0$. Now

$$
\left(K_{S}+G\right) \cdot \alpha=D \cdot \alpha-(H-G) \cdot \alpha<0 .
$$

On the other hand

$$
0>D \cdot \alpha=A \cdot \alpha+E \cdot \alpha>E \cdot \alpha .
$$

It follows that α is spanned by a component of E so that $R=\mathbb{R}^{+}[C]$, for some component C of E. In particular R is rational and we may choose H to be a \mathbb{Q}-divisor. We have

$$
0>\left(K_{S}+C\right) \cdot C=K_{C}=2 g-2
$$

Thus $g=0$ and C is a - 1 -curve.
Replacing H by a multiple, we may assume that H is very ample (for the time being, we only need that it is Cartier) and $K_{S}+H$ is ample. Suppose that $H \cdot C=m>0$. We may always assume that $m>1$ (simply replace H by a multiple). If $G=H+(m-2) C$, then G is big and it is nef, since $G \cdot C=2$. In particular G is ample by Nakai-Moishezon. Let $D=K_{S}+C+G$. Since we may write

$$
D=\left(K_{S}+H\right)+C,
$$

the stable base locus of D is contained in C. In particular for every curve $\Sigma \subset S$,

$$
D \cdot \Sigma \geq 0
$$

with equality if and only if $\Sigma=C$. There is an exact sequence

$$
0 \longrightarrow \mathcal{O}_{S}(D-C) \longrightarrow \mathcal{O}_{S}(D) \longrightarrow \mathcal{O}_{C}(D) \longrightarrow 0
$$

Now $\mathcal{O}_{C}(D)=\mathcal{O}_{C}$, since $\left.D\right|_{C}$ is a divisor of degree zero on \mathbb{P}^{1}. On the other hand,

$$
H^{1}\left(S, \mathcal{O}_{S}(D-C)\right)=H^{1}\left(S, \mathcal{O}_{S}\left(K_{S}+G\right)\right)=0
$$

by Kodaira vanishing. Thus there are no base points of D on C, so that D is semiample, and the resulting morphism $\pi: S \longrightarrow Z$ contracts C.

It remains to prove that Z is smooth. Consider the ample divisor $K_{S}+G$. We may always pick H very ample. In this case, I claim that $K_{S}+G$ is base point free (in fact it is very ample). The base locus is supported on C. Consider the exact

$$
0 \longrightarrow \mathcal{O}_{S}\left(K_{S}+G-C\right) \longrightarrow \mathcal{O}_{S}\left(K_{S}+G\right) \longrightarrow \mathcal{O}_{C}\left(K_{S}+G\right) \longrightarrow 0
$$

Then $\mathcal{O}_{C}\left(K_{S}+G\right) \simeq \mathcal{O}_{\mathbb{P}^{1}}(1)$. As before,

$$
H^{1}\left(S, \mathcal{O}_{S}\left(K_{S}+H+(m-3) C\right)=0\right.
$$

by Kodaira vanishing. Thus $K_{S}+G$ is base point free. Pick a general curve $\Sigma^{\prime} \in\left|K_{S}+G\right|$. Then this must intersect C transversally at a single smooth point. But then $\Sigma=\pi_{*} \Sigma^{\prime}$ is a smooth curve in Z. On the other hand $\Sigma+C \in|D|$. Since $|D|$ defines the contraction, the image of $\Sigma+C$, which is again Σ^{\prime} is Cartier.

But any variety which contains a smooth Cartier divisor, is smooth in a neighbourhood of the divisor. Thus Z is smooth.

