
14. Bend and Break

In this section we will indicate how to prove an interesting conse-
quence of Mori’s famous bend and break result:

Theorem 14.1 (Mori-Miyaoka). Let X be a normal projective variety
of dimension n, let H be a nef R-divisor and let C a curve contained
in the smooth locus of X.

If KX ·C < 0 then through every point x ∈ C there passes a rational
curve Lx such that

M · Lx ≤ 2n
M · C
−KX · C

.

In fact we will only prove:

Theorem 14.2 (Mori). Let X be a smooth Fano variety of dimension
n.

Then X is covered by rational curves C such that −KX ·C ≤ n+ 1.

However once one sees the proof of (14.2) it is not hard to at least
imagine how the proof of (14.1) goes. In both cases we start with a
morphism f : C −→ X, such that −KX ·

f
C < 0. Pick a point p ∈ C

and let x = f(p). The basic idea is to bend C, meaning that we will
deform the morphism f , whilst preserving the condition that p maps
to x. This will break C:

Lemma 14.3 (Rigidity-Lemma). Let f : X −→ Y and g : X −→ Z be
morphisms of varieties.

If f∗OX = OY , f is proper and there is a point y ∈ Y such that the
whole fibre f−1(y) is contracted to a point by g, then there is an open
neighbourhood U of y in Y , and a factorisation

f−1(U)
f - U

Z.

h

?
g -

Proof. Let Γ ⊂ Y × Z be the image of (f, g). Then the projection
morphism p : Γ −→ Y is proper, and p−1(y) = (y, z), is a single point,
by assumption. It follows that p is finite over an open neighbourhood
U of y ∈ Y . But

f∗Of−1(U) ⊃ p∗Op−1U ⊃ OU = f∗Of−1(U).

It follows that p|p−1(U) is an isomorphism. Let h be the composition of
the inverse map with the projection down to Z. �
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Lemma 14.4. Let F : C×B0 −→ Y be a morphism such that F (p, u) =
y, for all b ∈ B0, where C is a smooth proper curve and B0 is an open
subset of a smooth proper curve B.

If there is a point q ∈ C such that F |{q}×B0 is not constant then the
rational map F : C ×B 99K Y is not defined at some point of {p}×B.
In particular Y contains a rational curve passing through x.

Proof. If F were a morphism on the whole of C × B, then by the
rigidity Lemma, we could find an open neighbourhood U of p and an
open neighbourhood V of {p} × B such that F (p1, b1) is independent
of b1, for all (p1, b1) ∈ V . But then F (q, b) is independent of b, a
contradiction. �

So it remains to show that we can bend f .

Theorem 14.5. Let f : C −→ X be a morphism of a smooth curve
into a variety X, such that f(C) is contained in the smooth locus.

Then

Tf Hom(C,X) = H0(C, f ∗TX) and Tf Hom(C,X, p, x) = H0(C, f ∗TX⊗Ip).
Moreover,

dimf Hom(C,X) ≥ χ(C, f ∗TX) and dimf Hom(C,X, p, x) ≥ χ(C, f ∗TX⊗Ip).

Here the second space represents the set of morphisms which send
p to x. The point here is that the spaces Hom(C,X) are naturally
schemes not varieties. So even if the spaces were smooth at f , there
might be obstructions to deforming f , beyond the first level (which are
represented by the tangent space). But the obstructions to deforming
f live in H1(C, f ∗TX). Thus the difference

χ(C, f ∗TX) = h0(C, f ∗TX)− h1(C, f ∗TX),

represents deformations which can be lifted to any level, whence the
inequality on dimensions.

We need to recall Hirzebruch-Riemman-Roch for curves:

Theorem 14.6. Let E be a vector bundle of rank r and degree d over
a smooth curve C.

Then

χ(C,E) = h0(C,E)− h1(C,E) = d− r(g − 1).

In our case, −KX ·
f
C is positive and the degree is either −KX ·

f
C or

−KX ·
f
C − n (if one wants to fix a point). But there seems to no way

to ensure that the degree is more than n(g − 1). In other words, why
should the genus be small in relation to the degree? Note also, that we
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want to deform f in a non-trivial way (that is, not simply by applying
an automorphism of C). In other words we want more deformations
than the dimension the automorphism group (equal to h0(C, TC)).

If C is a copy of P1, one can compose f with the morphism z −→ zn.
This has the effect of multiplying the degree by n, without changing
the genus.

If C is an elliptic curve, we can still play the same trick. Multipli-
cation by n defines an isogeny of degree n2. This has the same effect
of increasing the degree by a factor of n2, whilst leaving the genus
unchanged.

But now suppose that the genus is at least 2. Let π : D −→ C be a
generically smooth morphism of degree e. Then

2h− 2 = e(2g − 2) + b.

The best one can hope for is that π is étale, that is, b = 0. The problem
is that then the genus increases by the same factor as the degree (they
both go up by a factor of e).

Suppose for a minute that the characteristic is p. Consider Frobenius
F : C −→ C. Composing f with Frobenius has the effect of increasing
the degree, without changing the genus. So, applying a high enough
power of Frobenius, we may assume that the morphism f deforms,
fixing the fact that p maps to x. But then X must be covered by
rational curves.

Now the case when C is a rational curve is a little special. Since
P1 has automorphisms, to break C, we need to deform it keeping two
points fixed. This wastes a little more of the degree. In fact

χ(P1, f ∗TX ⊗OP1(−p− q)) = −KX ·
f
C − 2n.

Playing around with this a little, one sees that one can break a rational
curve on a Fano variety until its degree is no more than n+ 1.

To summarise. If the characterstic is not zero, then we can find
rational curves C of degree −KX · C ≤ n+ 1.

In the general case, we realise X and C as schemes over finitely gen-
erated extension K of Q (just embed X into projective space, and let
K be the field generated any set of defining equations). Pick an inte-
gral domain R, with field of fractions K, a finitely generated extension
of Z and realise X over SpecR (that is, clear denominators from the
definining equations).

For every prime p, consider the reduction Xp of X modulo p (just
reduce the equations modulo this prime). The residue field is a finitely
generated extension of Fp, whence a finite field. For all but finitely
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many primes, Xp is smooth along Cp and −KXp · Cp < 0, and if X is
a smooth Fano, then so is Xp.

Thus by what we have already proved, Xp is covered by rational
curves of bounded degree, for all but finitely many primes. Since the
Hilbert scheme of subvarieties of bounded degree is of finite type, the
same must hold at the generic point, that is, in characteristic zero.

Note that it is absolutely crucial that the rational curves we produce
are of bounded degree, else we could never return from characteristic p
to characteristic zero. To prove (14.1) one needs to work a little harder.
As X is not smooth and −KX is not ample, one cannot assume that
the rational curves we produce are KX-negative. To compensate, one
composes with a larger power of Frobenius, but at the same time fixes
as many points as possible. This way we break off many curves. Playing
around with the Hodge Index Theorem, one gets the indicated bound,
in characteristic p, at least when M is an ample Q-divisor. One then
lifts this result to all characteristics. The general case follows easily
from the case when M is ample by an easy limiting argument.

Corollary 14.7. Let X be a normal projective variety of dimension
n. Let M be any nef divisor. Suppose that we may find nef R-divisors
D1, D2, . . . , Dn with the following two properties:

(1) D1 ·D2 · · · · ·Dn = 0, and
(2) −KX ·D2 · · · · ·Dn > 0.

Then X is swept out by rational curves Σ, such that D1 ·Σ = 0 and

M · Σ ≤ 2n
M ·D2 ·D3 · · · · ·Dn

−KX ·D2 ·D3 · · · · ·Dn

.

Proof. Let H1, H2, . . . , Hn be ample Q-divisors. If we pick H2, H3,
. . .Hn close enough to D2, D3, . . . , Dn, we have

−KX ·H2 ·H3 · · · ·Hn > 0.

Pick positive integers mi such that miHi is very ample, 2 ≤ i ≤ n
and let C be the intersection of general elements of |miHi|. Then C is
contained in the smooth locus of X and −KX ·C > 0. By (14.1) there
is a rational curve Σ such that

(kD +H) · Σ ≤ 2n
(kD +H) · (m2H2) · (m3H3) · · · · · (mnHn)

−KX · (m2H2) · (m3H3) · · · · · (mnHn)

= 2n
(kD +H) ·H2 ·H3 · · · · ·Hn

−KX ·H2 ·H3 · · · · ·Hn

.

where k is a positive integer. As H2, H3, . . .Hn approach D2, D3,
. . . , Dn, the numerator and denominator approach positive constants.
Thus the left hand side is bounded, and as we vary k, Σ = Σk belongs
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to a bounded family. Thus we may as well assume that Σ is fixed.
Letting k go to infinity and H approach M gives the result. �

Let me end this section by mentioning three fabulous results:

Theorem 14.8 (Mori). Let X be a smooth projective variety.
If TX is ample then X ' Pn.

Theorem 14.9 (Cho-Miyaoka-Shepherd-Barron; Kebekus). Let X be
a smooth projective Fano variety of dimension n.

If the smallest degree of a covering family of rational curves is n+ 1
then X ' Pn.

Note that (14.9) implies (14.8). Indeed, if C is a rational curve, then

TX |C = OP1(2)⊕OP1(a1)⊕OP1(a2)⊕ . . .OP1(an),

by a result of Grothendieck (every vector bundle on P1 splits) and if
TX |C is ample then ai ≥ 1. But then

−KX · C = 2 +
∑

ai ≥ n+ 1.

Theorem 14.10 (Bogomolov-McQuillan; Kebekus-Solá Conde-Toma).
Let F ⊂ TX be a possibly singular foliation on a normal projective va-
riety.

If C is any curve contained in the smooth locus of X along which
F is a regular foliation, then the leaves of F through any point p ∈ C
are algebraic and if x ∈ C is general, or F is regular, then this leaf is
rationally connected.
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