
15. Kawamata log terminal and all that

Definition 15.1. We say that a log pair (X,∆) is kawamata log
terminal if there is a log resolution π : Y −→ X such that if we write

KY + Γ = π∗(KX + ∆) + E,

where Γ ≥ 0 and E ≥ 0 have no common components, π∗Γ = ∆, and
π∗E = 0 then xΓy = 0.

We could rephrase this definition as saying that the coefficients of ∆
lie between zero and one, and that this condition continues to hold on
Y . If we rewrite the equation above as

KY + Γ = π∗(KX + ∆),

note that the kawamata log terminal condition becomes bΓc ≤ 0.
In fact this condition holds on any birational model and we have:

Lemma 15.2. A log pair (X,∆) is kawamata log terminal if and only
if the log discrepancy is greater than zero and b∆c = 0.

Proof. Suppose that (X,∆) is kawamata log terminal. We have to
check that the log discrepancy of every valuation ν is greater than zero.
If ν is exceptional for π then this is clear. Replacing (X,∆) by (Y,Γ)
it suffices to check that a log smooth pair (X,∆) has log discrepancy
greater than zero, if b∆c = 0. This follows from the formula for the
log discrepancy of a blow up.

Now suppose that the log discrepancy is greater than zero. Let
π : Y −→ X be a log resolution. If we write

KY + ∆̃ +
∑

Ei = π∗(KX + ∆) +
∑

aiEi

then ai > 0. Thus bΓc ≤ 0. �

Kawamata log terminal pairs behave very well with respect to finite
morphisms:

Lemma 15.3. Let π : Y −→ X be a finite morphism and let (X,∆)
and (Y,Γ) be log pairs such that

KY + Γ = π∗(KX + ∆).

Then (X,∆) is kawamata log terminal if and only if (Y,Γ) is kawamata
log terminal.

Proof. The trick is to prove a much stronger result. Let us drop the
condition that ∆ and Γ are effective. We will then prove that (X,∆)
has log discrepancy at least zero if and only if (Y,Γ) has log discrepancy
at least zero, with simultaneous equality.
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We first prove that if (Y,Γ) is kawamata log terminal and π is Galois,
with Galois group G, then (X,∆) is kawamata log terminal. Let ν be
a valuation of X. Pick a G-equivariant log resolution g : V −→ Y of
Y , which extracts the valuations µ1, µ2, . . . , µk corresonding to ν. Let
f : W −→ X be the quotient of g, so that there is a commutative
square

V
g - Y

W

ψ

?
f- X.

π

?

Now f is not necessarily a log resolution. However it will extract ν
and W is Q-factorial. By assumption the log discrepancy of µi is at
least zero. The Riemann-Hurwitz formula for log pairs then says that
the log discrepancy of ν is at least zero, with equality if and only if we
have equality for each µi.

Thus (X,∆) is kawamata log terminal.
Now suppose that (X,∆) is kawamata log terminal. Let ψ : Z −→ X

be the Galois closure of π. Then the induced morphism Z −→ Y is
Galois. Replacing Z by Y we may assume that π is Galois. The result
is easy in this case.

Finally if (Y,Γ) is Galois then going up we may assume that π is
Galois. �

Suppose that Zr acts on Cn. It turns out that we can always diago-
nalise the action:

(x1, x2, . . . , xn) −→ (y1, y2, . . . , yn),

where yi = ωaixi, and ω is a primitive rth root of unity. We can encode
this by the datum:

1

r
(a1, a2, . . . , an).

As usual, we can assume that 0 ≤ ai ≤ r − 1. Also, since we get to
choose ω, if the action is faithful, then we can partialise normalise, and
we may assume that a1 = 1. Finally, we always assume that the action
is unramified in codimension one, so that the gcd of all but one of the
ai, for any i, is always one. The number r is called the index of the
quotient singularity.

For surfaces there are two interesting extreme cases:

1

r
(1, r − 1) and

1

r
(1, 1).
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In the first case,

C[x, y]Zr = C[xr, yr, xy] =
C[a, b, c]

〈ac = bn〉
.

Using different coordinates, we have

(x2 + y2 − zn = 0) ⊂ C3.

Suppose that we blow up the origin. We introduce coordinates s and t
such that x = sz and y = tz. Then we get

(s2 + t2 − zn−2) ⊂ C3,

and an exceptional divisor, which is the union of two copies of P1,
where the new singular point is the intersection of the two copies of
P1. Continuing in this way, we get a chain of n− 1, −2-curves. This is
called an An−1-singularity.

We can encode the resolution by using a graph. The vertices are
the exceptional divisors, and edges correspond to intersection of two
exceptional divisors. We further label the vertices by minus the self-
intersection of the exceptional divisors. An An-singularity corresponds
therefore to a chain of n vertices, all labelled with 2.

At the opposite extreme, consider 1/r(1, 1). Then

C[x, y]Zr = C[xr, xr−1y, xr−2y2, . . . , yr],

which is the coordinate ring of the cone over a rational normal curve
of degree r. The minimal resolution consists of a single copy of P1,
with self-intersection −r. The corresponding graph is a single vertex
labelled by r.

Let S be any singular surface. The minimal resolution of S is a
(the) relatively minimal model π : T −→ S over S. That is, take any
log resolution of S, and run a relatively minimal model program over
S. The resulting morphism π is characterised by the property that it
does not contract any −1-curves.

Theorem 15.4. Let S be a cyclic quotient singularity of type 1/r(1, a).
Then the graph of the minimal resolution of S is a chain of P1’s,

labelled by (a1, a2, . . . , ak), where

r

a
= a1 −

1

a2 − . . .
,

a continued fraction.
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For example, consider 1/11(1, 5). We have

11

5
= 3− 4

5

= 3− 1

5/4

= 3− 1

2− 3/4

= 3− 1

2− 1
4/3

= 3− 1

2− 1
2−2/3

= 3− 1

2− 1
2− 1

3/2

= 3− 1

2− 1
2− 1

2−1/2

Thus the minimal resolution is a chain of 5 P1’s, of self-intersection
(−3,−2,−2,−2,−2).

Theorem 15.5. Let S be a surface, let C be a smooth curve on S, and
suppose that S has cyclic quotient singularities of index r1, r2, . . . , rk,
such that the strict transform of C always intersects one end of the
chain at a single point.

Then

(KS + C)|C = KC +
∑ ri − 1

ri
pi,

where pi are the points of C where S is singular, and the log discrepancy
of the pair (S,C) is greater than zero (in fact equal to the minimum of
1/ri).

Proof. One can prove this in two ways. One is by direct computation,
on the minimal resolution. The second is to use the Riemann-Hurwitz
formula. �

Kawamata log terminal singularities are completely classified for sur-
faces.

Theorem 15.6. Let S be a kawamata log terminal surface.
Then the resolution graph of S is either a chain, or has one vertex

of degree three, attached to three chains. If the indices of the chains
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are p, q and r, then

(p, q, r) = (2, 2,m), (2, 3, 3), (2, 3, 4), (2, 3, 5).

The log discrepancy is one if and only if each self-intersection is −2.
The corresponding singularities are known as Du Val singularities, and
the corresponding graphs are known as An, Dn, E6, E7 and E8.

Proof. Suppose that there is a vertex of degree at least three. Let ν be
the corresponding valuation. Then we can find a morphism π : T −→
S which extracts precisely the exceptional divisor associated to ν (in
other words, contract all other divisors on the minimal resolution). By
assumption we may write

KT + E = π∗KS + aE,

where a > 0. It follows that KT + E is π-negative. Suppose that the
singular points along E are cyclic quotient singularities p1, p2, . . . , pk,
with indices r1, r2, . . . , rk. By adjunction, we have

0 > (KT + E) · E = KE +
∑ ri − 1

ri
pi = KE + ∆.

But then (E,∆) is a log Fano pair, and the only possibilities have been
listed.

With a little more work one can show that the only possibility is
that each pi is cyclic quotient, ie that otherwise (S, (1 − a)E) is not
kawamata log terminal. �

Corollary 15.7. Let S be a normal surface.
S is kawamata log terminal if and only if S has quotient singularities.

Proof. We already know that if S has quotient singularities then it is
kawamata log terminal. Now suppose that S is kawamata log terminal.
Then the resolution graph is given by (15.6). In characteristic zero the
resolution graph determines the singularity and it is not hard to check
that any graph in the list is a quotient singularity. �

Definition 15.8. We say that a log pair (X,∆) is log canonical if
the log discrepancy is at least zero.

Theorem 15.9. Let S be a log canonical surface which is not kawamata
log terminal.

Then the minimal resolution of S is a smooth elliptic curve, a cycle
of P1’s, a tree with a vertex of degree 3, and indices (2, 3, 6), (2, 4, 4),
(3, 3, 3), or two vertices of degree 3, connected by an interior chain, with
two sets of −2-curves at the end, or a vertex with degree 4, attached to
4, −2-curves (the last case is really a degenerate case of the penultimate
case).
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Proof. In this case,

KT + E = π∗KS +
∑

aiEi,

where ai ≥ 0 with equality at least once, and the result follows as in
the proof of (15.6). �
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