16. Cone and Contraction Theorem

The cone and contraction theorem are valid for kawamata log terminal pairs. These results are due principally to Kawamata and Shokurov:

Definition 16.1. Let $\pi: X \longrightarrow Z$ be a proper morphism and let D be an \mathbb{R}-Cartier divisor. We say that D is π-big if its restriction to the general fibre is big.

Let D be an \mathbb{R}-divisor. We say that D is π-semiample if there is a contraction $\psi: X \longrightarrow Y$ over Z such that $D=\psi^{*} H$, where H is an ample over Z, \mathbb{R}-divisor on Y.

Note that if $\pi: X \longrightarrow Z$ is birational then every divisor is big over Z as the generic fibre is a point.

Theorem 16.2 (Kawamata-Viehweg vanishing). Let $\pi: X \longrightarrow Z$ be a projective morphism and let D be an integral \mathbb{Q}-Cartier divisor.

If (X, Δ) kawamata log terminal, $D-\left(K_{X}+\Delta\right)$ is π-nef and π-big then $R^{i} \pi_{*} \mathcal{O}_{X}(D)=0$ for $i>0$.

Theorem 16.3 (Base point free theorem). Let $\pi: X \longrightarrow Z$ be a projective morphism.

If (X, Δ) kawamata log terminal, $K_{X}+\Delta$ is π-nef and Δ is π-big then $K_{X}+\Delta$ is π-semiample.

Corollary 16.4. Let $\pi: X \longrightarrow Z$ be a projective morphism.
If (X, Δ) is kawamata log terminal and $K_{X}+\Delta$ is π-nef and π-big then $K_{X}+\Delta$ is π-semiample.

We indicate how (16.4) is derived from (16.3). We will need a simple result about kawamata log terminal pairs:

Lemma 16.5. Let (X, Δ) be a kawamata log terminal pair and let D be any \mathbb{R}-Cartier divisor.

If $D \geq 0$ then we may find $\delta>0$ such that $(X, \Delta+\delta D)$ is kawamata log terminal.

Proof. Pick a log resolution of $(X, \Delta+D), \pi: Y \longrightarrow X$. By assumption if we write

$$
K_{Y}+\Gamma=\pi^{*}\left(K_{X}+\Delta\right)
$$

then $\lfloor\Gamma\rfloor \leq 0$. If $G=\pi^{*} D$ then

$$
\pi^{*}(\delta D)=\delta \pi^{*} D=\delta G
$$

and so

$$
K_{Y}+\Gamma+\delta G=\pi^{*}\left(K_{X}+\Delta+\delta D\right)
$$

Proof of (16.4). By assumption $K_{X}+\Delta \sim_{\mathbb{R}} D \geq 0$. Pick $\delta>0$ such that $(X, \Delta+\delta D)$ is kawamata \log terminal. As $\Delta+\delta D$ is π-big we may apply (16.3) to

$$
K_{X}+\Delta+\delta D \sim_{\mathbb{R}}(1+\delta)\left(K_{X}+\Delta\right)
$$

to conclude that $K_{X}+\Delta$ is π-semiample.
Theorem 16.6 (Cone Theorem). Let (X, Δ) be a kawamata log terminal pair and let $\pi: X \longrightarrow Z$ be a projective morphism.

Then

$$
\overline{\mathrm{NE}}(X)=\overline{\mathrm{NE}}(X)_{K_{X}+\Delta \geq 0}+\sum_{i} R_{i}=\mathbb{R}^{+}\left[C_{i}\right]
$$

where R_{i} are countably many extremal rays spanned by rational curves C_{i} contracted by π, such that $0<-\left(K_{X}+\Delta\right) \cdot C_{i} \leq 2 n$.

In particular if H is any π-ample divisor, then there are only finitely many of these curves such that $\left(K_{X}+\Delta+H\right) \cdot C_{i}<0$.

We sketch a proof of a stronger version of (16.6). We will need some preliminary definitions and results:

Definition 16.7. Let (X, Δ) be a log pair.
A non kawamata log terminal place is a valuation of log discrepancy at most zero. A non kawamata log terminal centre is the centre of a non kawamata log terminal place. We say that a non kawamata log terminal centre is minimal if it is minimal with respect to inclusion.

The non kawamata log terminal locus $\operatorname{Nklt}(X, \Delta)$ is the union of the non kawamata log terminal centres.

In the case when (X, Δ) is log canonical we will also refer to a non kawamata \log terminal place (respectively centre, respectively locus) as a log canonical place (respectively centre, respectively locus).
Example 16.8. Let $\left(X=\mathbb{P}^{2}, \Delta=C\right)$ where C is a nodal cubic. Then (X, Δ) is log canonical and the non kawamata log terminal centres are C and the node. The node is minimal and the non kawamata log terminal locus is the C.

We will need a basic result about the calculus of log canonical centres:
Theorem 16.9. Let (X, Δ) be a log canonical pair.
(1) There are only finitely many log canonical centres.
(2) The intersection of two log canonical centres is a union of log canonical centres.
(3) A minimal log canonical centre is normal.

Theorem 16.10. Let (X, Δ) be a log pair and let $\pi: X \longrightarrow Z$ be a projective morphism.

Then

$$
\overline{\mathrm{NE}}(X)=\overline{\mathrm{NE}}(X)_{K_{X}+\Delta \geq 0}+i_{*} \overline{\mathrm{NE}}\left(Z_{-\infty}\right)+\sum_{i} R_{i}=\mathbb{R}^{+}\left[C_{i}\right],
$$

where $i: Z_{\infty} \longrightarrow X$ is the inclusion of the non kawamata log terminal locus and R_{i} are countably many extremal rays spanned by rational curves C_{i} contracted by π, such that $0<-\left(K_{X}+\Delta\right) \cdot C_{i} \leq 2 n$.

In particular if H is any π-ample divisor, then there are only finitely many of these curves such that $\left(K_{X}+\Delta+H\right) \cdot C_{i}<0$.

Corollary 16.11. Let (X, Δ) be a log pair and let $\pi: X \longrightarrow Z$ be a projective morphism.

If (X, Δ) is log canonical outside finitely many points then

$$
\overline{\mathrm{NE}}(X)=\overline{\mathrm{NE}}(X)_{K_{X}+\Delta \geq 0}+\sum_{i} R_{i}=\mathbb{R}^{+}\left[C_{i}\right]
$$

where R_{i} are countably many extremal rays spanned by rational curves C_{i} contracted by π, such that $0<-\left(K_{X}+\Delta\right) \cdot C_{i} \leq 2 n$

In particular if H is any π-ample divisor, then there are only finitely many of these curves such that $\left(K_{X}+\Delta+H\right) \cdot C_{i}<0$.

Proof. Immediate from 16.10), since $Z_{-\infty}$ contains no curves.
The following key result is due to Kawamata:
Theorem 16.12. Let (X, Δ) be a log pair where X is projective and kawamata log terminal. Let H be an ample divisor and let V be the normalisation of a non kawamata log terminal centre W.

If (X, Δ) is log canonical at the generic point of W then we may write

$$
\left.\left(K_{X}+\Delta+H\right)\right|_{V}=K_{V}+\Theta
$$

where (V, Θ) is a log pair and the non kawamata log terminal locus of (V, Θ) is the restriction of the non kawamata log terminal locus of (X, Δ).

Definition 16.13. Let (X, Δ) be a log canonical pair and let $D \geq 0$ be an \mathbb{R}-Cartier divisor. The log canonical threshold of (X, Δ) with respect to D is

$$
\lambda=\sup \{t \in \mathbb{R} \mid(X, \Delta+t D) \text { is log canonical }\} .
$$

Proof of (16.10). We just prove the absolute case, that is, when Z is a point. As usual pick an ample divisor A such that if μ is the nef
threshold of (X, Δ) with respect to A then $D=K_{X}+\Delta+\mu A=$ $K_{X}+\Delta+H$ is zero on only one $\left(K_{X}+\Delta\right)$-extremal ray R.

Let $\nu=\nu(X, D)$ be the numerical dimension. There are two cases. If $\nu<n$, that is, if D is not big then we are looking for rational curves which cover X. We apply 14.7) to $D_{1}, D_{2}, \ldots, D_{n}$,

$$
D_{i}= \begin{cases}D & \text { if } i \leq \nu+1 \\ H & \text { otherwise }\end{cases}
$$

With this choice, we have

$$
D_{1} \cdot D_{2} \cdot \ldots D_{n}=0
$$

and

$$
\begin{aligned}
-K_{X} \cdot D_{2} \cdot \ldots D_{n} & =-D_{1} \cdot D_{2} \cdot \ldots D_{n}+\Delta \cdot D_{2} \cdot \ldots D_{n}+H \cdot D_{2} \cdot \ldots D_{n} \\
& >0
\end{aligned}
$$

Thus (14.7) implies that X is covered by rational curves Σ such that

$$
D \cdot \Sigma=0 \quad \text { and } \quad H \cdot \Sigma \leq 2 n \frac{H \cdot D_{2} \cdot D_{3} \cdots \cdot D_{n}}{-K_{X} \cdot D_{2} \cdot D_{3} \cdots \cdot D_{n}}
$$

The first condition implies that Σ spans the extremal ray R. Using the first equality, we can rewrite the second inequality as

$$
\begin{aligned}
-\left(K_{X}+\Delta\right) \cdot \Sigma & =H \cdot \Sigma \\
& \leq 2 n \frac{H \cdot D_{2} \cdot D_{3} \cdots \cdots D_{n}}{-K_{X} \cdot D_{2} \cdot D_{3} \cdots \cdot D_{n}} \\
& =2 n \frac{-\left(K_{X}+\Delta\right) \cdot D_{2} \cdot D_{3} \cdots \cdots D_{n}}{-K_{X} \cdot D_{2} \cdot D_{3} \cdots \cdots D_{n}} \\
& \leq 2 n \frac{-K_{X} \cdot D_{2} \cdot D_{3} \cdots \cdots D_{n}}{-K_{X} \cdot D_{2} \cdot D_{3} \cdots \cdots D_{n}} \\
& =2 n .
\end{aligned}
$$

Now suppose that D is big. Pick G such that $H-G$ is ample, close enough to H such that G is ample and $K_{X}+\Delta+G$ is big. Then we may find $B \geq 0$ such that

$$
B \sim_{\mathbb{R}} K_{X}+\Delta+G .
$$

Consider the closed sets

$$
Z_{t}=\operatorname{Nklt}(X, \Delta+G+t B)
$$

If $t=0$ then we get $Z_{-\infty}$ and if

$$
t \leq s \quad \text { then } \quad Z_{t} \subset Z_{s}
$$

If t is large then Z_{t} is equal to the support of B and by Noetherian induction

$$
\left\{Z_{t} \mid t \in[0, \infty)\right\}
$$

is a finite set. Let W be a closed irreducible subset with normalisation V and let $j: V \longrightarrow X$ be the composition of the normalisation and inclusion. We say that R comes from V if there is a ray S of $\overline{\mathrm{NE}}(V)$ such $i_{*} S=R$. In this case note that we can choose S extremal.

By construction $B \cdot R<0$. It follows that $R=\mathbb{R}_{\geq 0} \alpha$ and $\beta \in \mathrm{NE}(X)$ is close enough to α then $B \cdot \beta<0$ and we may write

$$
\beta=\sum a_{i}\left[C_{i}\right] \quad \text { where } \quad B \cdot C_{i}<0
$$

It follows that $C_{i} \subset B$ so that β comes from the normalisation V of a component W of B. But then R comes from the normalisation of a component V of B.

Pick V with the property that it is the normalisation of a component W of some Z_{t}, R comes from V and W is minimal with this property. If V is the normalisation of a component of $Z_{0}=Z_{-\infty}$ then there is nothing to prove. Otherwise let λ be the \log canonical threshold of $(X, \Delta+G)$ with respect to B at the generic point of V. By 16.12 we may find (V, Θ) such that

$$
\left.\left(K_{X}+\Delta+\lambda B+G\right)\right|_{V}=K_{V}+\Theta,
$$

and

$$
\operatorname{Nklt}(V, \Theta)=\left.Z_{-\infty}\right|_{V}
$$

Clearly $\left(K_{V}+\Theta\right) \cdot S<0$ and by assumption S does not come from $\operatorname{Nklt}(V, \Theta)$. Therefore we are done by induction on the dimension.

