
16. Cone and Contraction Theorem

The cone and contraction theorem are valid for kawamata log termi-
nal pairs. These results are due principally to Kawamata and Shokurov:

Definition 16.1. Let π : X −→ Z be a proper morphism and let D be
an R-Cartier divisor. We say that D is π-big if its restriction to the
general fibre is big.

Let D be an R-divisor. We say that D is π-semiample if there is
a contraction ψ : X −→ Y over Z such that D = ψ∗H, where H is an
ample over Z, R-divisor on Y .

Note that if π : X −→ Z is birational then every divisor is big over
Z as the generic fibre is a point.

Theorem 16.2 (Kawamata-Viehweg vanishing). Let π : X −→ Z be a
projective morphism and let D be an integral Q-Cartier divisor.

If (X,∆) kawamata log terminal, D − (KX + ∆) is π-nef and π-big
then Riπ∗OX(D) = 0 for i > 0.

Theorem 16.3 (Base point free theorem). Let π : X −→ Z be a pro-
jective morphism.

If (X,∆) kawamata log terminal, KX + ∆ is π-nef and ∆ is π-big
then KX + ∆ is π-semiample.

Corollary 16.4. Let π : X −→ Z be a projective morphism.
If (X,∆) is kawamata log terminal and KX + ∆ is π-nef and π-big

then KX + ∆ is π-semiample.

We indicate how (16.4) is derived from (16.3). We will need a simple
result about kawamata log terminal pairs:

Lemma 16.5. Let (X,∆) be a kawamata log terminal pair and let D
be any R-Cartier divisor.

If D ≥ 0 then we may find δ > 0 such that (X,∆ + δD) is kawamata
log terminal.

Proof. Pick a log resolution of (X,∆+D), π : Y −→ X. By assumption
if we write

KY + Γ = π∗(KX + ∆)

then bΓc ≤ 0. If G = π∗D then

π∗(δD) = δπ∗D = δG.

and so

KY + Γ + δG = π∗(KX + ∆ + δD). �
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Proof of (16.4). By assumption KX + ∆ ∼R D ≥ 0. Pick δ > 0 such
that (X,∆ + δD) is kawamata log terminal. As ∆ + δD is π-big we
may apply (16.3) to

KX + ∆ + δD ∼R (1 + δ)(KX + ∆)

to conclude that KX + ∆ is π-semiample. �

Theorem 16.6 (Cone Theorem). Let (X,∆) be a kawamata log ter-
minal pair and let π : X −→ Z be a projective morphism.

Then
NE(X) = NE(X)KX+∆≥0 +

∑
i

Ri = R+[Ci],

where Ri are countably many extremal rays spanned by rational curves
Ci contracted by π, such that 0 < −(KX + ∆) · Ci ≤ 2n.

In particular if H is any π-ample divisor, then there are only finitely
many of these curves such that (KX + ∆ +H) · Ci < 0.

We sketch a proof of a stronger version of (16.6). We will need some
preliminary definitions and results:

Definition 16.7. Let (X,∆) be a log pair.
A non kawamata log terminal place is a valuation of log dis-

crepancy at most zero. A non kawamata log terminal centre is
the centre of a non kawamata log terminal place. We say that a non
kawamata log terminal centre is minimal if it is minimal with respect
to inclusion.

The non kawamata log terminal locus Nklt(X,∆) is the union
of the non kawamata log terminal centres.

In the case when (X,∆) is log canonical we will also refer to a non
kawamata log terminal place (respectively centre, respectively locus)
as a log canonical place (respectively centre, respectively locus).

Example 16.8. Let (X = P2,∆ = C) where C is a nodal cubic.
Then (X,∆) is log canonical and the non kawamata log terminal centres
are C and the node. The node is minimal and the non kawamata log
terminal locus is the C.

We will need a basic result about the calculus of log canonical centres:

Theorem 16.9. Let (X,∆) be a log canonical pair.

(1) There are only finitely many log canonical centres.
(2) The intersection of two log canonical centres is a union of log

canonical centres.
(3) A minimal log canonical centre is normal.
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Theorem 16.10. Let (X,∆) be a log pair and let π : X −→ Z be a
projective morphism.

Then

NE(X) = NE(X)KX+∆≥0 + i∗NE(Z−∞) +
∑
i

Ri = R+[Ci],

where i : Z∞ −→ X is the inclusion of the non kawamata log terminal
locus and Ri are countably many extremal rays spanned by rational
curves Ci contracted by π, such that 0 < −(KX + ∆) · Ci ≤ 2n.

In particular if H is any π-ample divisor, then there are only finitely
many of these curves such that (KX + ∆ +H) · Ci < 0.

Corollary 16.11. Let (X,∆) be a log pair and let π : X −→ Z be a
projective morphism.

If (X,∆) is log canonical outside finitely many points then

NE(X) = NE(X)KX+∆≥0 +
∑
i

Ri = R+[Ci],

where Ri are countably many extremal rays spanned by rational curves
Ci contracted by π, such that 0 < −(KX + ∆) · Ci ≤ 2n

In particular if H is any π-ample divisor, then there are only finitely
many of these curves such that (KX + ∆ +H) · Ci < 0.

Proof. Immediate from (16.10), since Z−∞ contains no curves. �

The following key result is due to Kawamata:

Theorem 16.12. Let (X,∆) be a log pair where X is projective and
kawamata log terminal. Let H be an ample divisor and let V be the
normalisation of a non kawamata log terminal centre W .

If (X,∆) is log canonical at the generic point of W then we may
write

(KX + ∆ +H)|V = KV + Θ,

where (V,Θ) is a log pair and the non kawamata log terminal locus
of (V,Θ) is the restriction of the non kawamata log terminal locus of
(X,∆).

Definition 16.13. Let (X,∆) be a log canonical pair and let D ≥ 0 be
an R-Cartier divisor. The log canonical threshold of (X,∆) with
respect to D is

λ = sup{ t ∈ R | (X,∆ + tD) is log canonical }.

Proof of (16.10). We just prove the absolute case, that is, when Z is
a point. As usual pick an ample divisor A such that if µ is the nef
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threshold of (X,∆) with respect to A then D = KX + ∆ + µA =
KX + ∆ +H is zero on only one (KX + ∆)-extremal ray R.

Let ν = ν(X,D) be the numerical dimension. There are two cases.
If ν < n, that is, if D is not big then we are looking for rational curves
which cover X. We apply (14.7) to D1, D2, . . . , Dn,

Di =

{
D if i ≤ ν + 1

H otherwise.

With this choice, we have

D1 ·D2 · . . . Dn = 0

and

−KX ·D2 · . . . Dn = −D1 ·D2 · . . . Dn + ∆ ·D2 · . . . Dn +H ·D2 · . . . Dn

> 0.

Thus (14.7) implies that X is covered by rational curves Σ such that

D · Σ = 0 and H · Σ ≤ 2n
H ·D2 ·D3 · · · · ·Dn

−KX ·D2 ·D3 · · · · ·Dn

.

The first condition implies that Σ spans the extremal ray R. Using the
first equality, we can rewrite the second inequality as

−(KX + ∆) · Σ = H · Σ

≤ 2n
H ·D2 ·D3 · · · · ·Dn

−KX ·D2 ·D3 · · · · ·Dn

= 2n
−(KX + ∆) ·D2 ·D3 · · · · ·Dn

−KX ·D2 ·D3 · · · · ·Dn

≤ 2n
−KX ·D2 ·D3 · · · · ·Dn

−KX ·D2 ·D3 · · · · ·Dn

= 2n.

Now suppose that D is big. Pick G such that H −G is ample, close
enough to H such that G is ample and KX + ∆ + G is big. Then we
may find B ≥ 0 such that

B ∼R KX + ∆ +G.

Consider the closed sets

Zt = Nklt(X,∆ +G+ tB).

If t = 0 then we get Z−∞ and if

t ≤ s then Zt ⊂ Zs.
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If t is large then Zt is equal to the support of B and by Noetherian
induction

{Zt | t ∈ [0,∞) }
is a finite set. Let W be a closed irreducible subset with normalisation
V and let j : V −→ X be the composition of the normalisation and
inclusion. We say that R comes from V if there is a ray S of NE(V )
such i∗S = R. In this case note that we can choose S extremal.

By construction B ·R < 0. It follows that R = R≥0α and β ∈ NE(X)
is close enough to α then B · β < 0 and we may write

β =
∑

ai[Ci] where B · Ci < 0.

It follows that Ci ⊂ B so that β comes from the normalisation V of
a component W of B. But then R comes from the normalisation of a
component V of B.

Pick V with the property that it is the normalisation of a component
W of some Zt, R comes from V and W is minimal with this property.
If V is the normalisation of a component of Z0 = Z−∞ then there is
nothing to prove. Otherwise let λ be the log canonical threshold of
(X,∆ +G) with respect to B at the generic point of V . By (16.12) we
may find (V,Θ) such that

(KX + ∆ + λB +G)|V = KV + Θ,

and
Nklt(V,Θ) = Z−∞|V .

Clearly (KV + Θ) · S < 0 and by assumption S does not come from
Nklt(V,Θ). Therefore we are done by induction on the dimension. �
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