
3. Ample and Semiample

We recall some very classical algebraic geometry. Let D be an in-
tegral Weil divisor. Provided h0(X,OX(D)) > 0, D defines a rational
map:

φ = φD : X 99K Y.
The simplest way to define this map is as follows. Pick a basis σ0, σ1, . . . , σm
of the vector space H0(X,OX(D)). Define a map

φ : X −→ Pm by the rule x −→ [σ0(x) : σ1(x) : · · · : σm(x)].

Note that to make sense of this notation one has to be a little careful.
Really the sections don’t take values in C, they take values in the fibre
Lx of the line bundle L associated to OX(D), which is a 1-dimensional
vector space (let us assume for simplicity that D is Cartier so that
OX(D) is locally free). One can however make local sense of this mor-
phism by taking a local trivialisation of the line bundle L|U ' U × C.
Now on a different trivialisation one would get different values. But
the two trivialisations differ by a scalar multiple and hence give the
same point in Pm.

However a much better way to proceed is as follows.

Pm ' P(H0(X,OX(D))∗).

Given a point x ∈ X, let

Hx = {σ ∈ H0(X,OX(D)) |σ(x) = 0 }.
Then Hx is a hyperplane in H0(X,OX(D)), whence a point of

φ(x) = [Hx] ∈ P(H0(X,OX(D))∗).

Note that φ is not defined everywhere. The problem in either de-
scription is that the sections of H0(X,OX(D)) might all vanish at x.

Definition 3.1. Let X be a normal variety and let D be an integral
Weil divisor. The complete linear system

|D| = {D′ |D′ ≥ 0, D′ ∼ D }.
The base locus of |D| is the intersection of all of the elements of |D|.
We say that |D| is base point free if the base locus is empty.

In fact, given a section σ ∈ H0(X,OX(D)) the zero locus D′ of
σ defines an element of |D| and every element of |D| arises in this
fashion. Thus the base locus of |D| is precisely the locus where φD is
not defined. Thus |D| is base point free if and only if φD is a morphism
(or better everywhere defined). In this case the linear system can be
recovered by pulling back the hyperplane sections of Y ⊂ Pm−1 and in
fact OX(D) = φ∗OPn(1).
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Definition 3.2. We say that a Q-divisor D on a normal variety is
semiample if |mD| is base point free for some m ∈ N. We say that an
integral divisor D is very ample if φ : X −→ Pn defines an embedding
of X. We say that D is ample if mD is very ample for some m ∈ N.

Theorem 3.3 (Serre-Vanishing). Let X be a normal projective variety
and let D be a Cartier divisor on X.

TFAE

(1) D is ample.
(2) For every coherent sheaf F on X, there is a positive integer m

such that

H i(X,F(mD)) = 0,

for all m ≥ m0 and i > 0 (and these cohomology groups are
finite dimensional vector spaces).

(3) For every coherent sheaf F on X, there is a positive integer m0

such that the natural map

H0(X,F(mD))⊗OX −→ F(mD),

is surjective, for all m divisible by m0.

Proof. Suppose that D is ample. Then φkD = i : X −→ Pn defines an
embedding of X into projective space, for some k ∈ N. Let F be a
coherent sheaf on X. Let Fj = F(jD), 0 ≤ j ≤ k − 1. Let m ∈ N.
Then we may write m = m′k + j, for some 0 ≤ j ≤ k − 1. In this case

H i(X,F(mD)) = H i(X,Fj(m
′kD)) = 0,

Thus replacing D by kD we may assume that D = i∗H is very ample.
In this case

H i(X,F(mD)) = H i(Pn, i∗F(mH)).

Thus replacing X by Pn, F by i∗F and D by H we may assume that
X = Pn.

We proceed by descending induction on i. If i > n the result is clear
(either use Grothendieck’s theorem or the fact that Pn is covered by
n+ 1 open affines).

Now every coherent sheaf on Pn is a quotient of a direct sum of line
bundles. Thus we get a short exact sequence:

0 −→ K −→ E −→ F −→ 0,

where E is a direct sum of line bundles and K is coherent. Since we
have shown that An−1(Pn) = Z it follows that each line bundle on Pn

is of the form OPn(aH) for some a ∈ Z (it is customary to drop the
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H). Twisting by a large multiple of H we may assume that each a > 0
is large. By direct computation

H i(Pn,OPn(a)) = 0,

for i > 0. Taking the long exact sequence associated to the short exact
sequence gives

H i(Pn,F) ' H i+1(Pn,K),

and so (1) implies (2) by descending induction on i.
Suppose that (2) holds. Let p ∈ X be a point of X and let Cp be the

skyscraper sheaf supported at p, with stalk C. Then there is an exact
sequence

0 −→ I(mD) −→ F(mD) −→ F(mD)⊗ Cp −→ 0,

where I(mD) is a coherent sheaf. Since by assumption

H1(X, I(mD)) = 0,

for m sufficiently large, taking the long exact sequence of cohomology,
it follows that

H0(X,F(mD)) −→ H0(X,F(mD)⊗ Cp),

is surjective for m sufficiently large. But then

H0(X,F(mD))⊗OX −→ F(mD),

is surjective in a neighbourhood of p by Nakayama’s Lemma. As X is
compact, it follows that (2) implies (3).

Suppose that (3) holds. Pick m0 such that

H0(X,OX(mD))⊗OX −→ OX(mD),

is surjective for all m ≥ m0. Since there is a surjection

OX(mD) −→ Cp(mD),

it follows that there is a surjection,

H0(X,OX(mD))⊗OX −→ Cp(mD).

But then we may find a section σ ∈ H0(X,OX(mD)) not vanishing at
x. This gives an element D′ ∈ |mD| not containing x. Thus x /∈ Bm.
It follows that Bm is empty, so that mD is base point free and so D is
semiample.

Let x 6= y be two points of X and let Ix be the ideal sheaf of x. Pick
a positive integer m0 such that

H0(X, Ix(mD))⊗OX −→ Ix(mD),

is surjective for all m ≥ m0. As above, it follows that

H0(X, Ix(mD))⊗OX −→ Ix ⊗ Cy(mD) = Cy(mD),
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is surjective. But then we may an element of |mD| passing through x
but not through y. Thus φmD(x) 6= φmD(y). The same m0 works for all
y 6= x. Given x and y we may find a neighbourhood of (x, y) ∈ X ×X
such that phmD is injective on this neighbourhood. By compactness of
X ×X we may find m0 that works for all x 6= y. It follows that φmD

is injective, that is |mD| separates points.
Finally pick a length two scheme z ⊂ X supported at x. This deter-

mines a surjection,

Ix(mD) −→ Cx(mD)

Composing, we get a surjection

H0(X, Ix(mD))⊗OX −→ Cx(mD),

By a repeat of the Noetherian argument given above, if m is sufficiently
large and divisible then this map is surjective for all irreducible length
two schemes. On the other hand, the Zariski tangent space of any
scheme is the union of the irreducible length two subschemes of X,
and so the map φmD is an injective immersion (that is it is injective on
tangent spaces). But then φmD is an embedding (it is a straightforward
application of Nakayama’s Lemma to check that the implicit function
argument extends to the case of singular varieties). Thus (3) implies
(1). �

More generally if X is a scheme, we will use (2) of (3.3) as the
definition of ample:

Lemma 3.4. Let f : X −→ Y be a morphism of projective schemes.
Let D be a Q-Cartier divisor on Y .

(1) If D is ample and f is finite then f ∗D is ample.
(2) If f is surjective and f ∗D is ample (this can only happen if f

is finite) then D is ample.

Proof. We may suppose that D is Cartier.
Suppose that D is ample and let F be a coherent sheaf on X. As f

is finite, we have

H i(X,F(mf ∗D)) = H i(Y, f∗F(mD)),

which is zero for m sufficiently large. Thus f ∗D is ample. This proves
(1).

Now suppose that f is surjective and f ∗D is ample. We first prove
(2) in the special case when X = Yred and f is the natural inclusion.
Suppose that f ∗D is ample. Let IX be the ideal sheaf of X in Y . Then
IkX = 0 for some k > 0, which we may assume to be minimal. We
proceed by induction on k. If k = 1 then f is an isomorphism and
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there is nothing to prove. Otherwise k > 1. Let F be a coherent sheaf
on Y . Then there is an exact sequence

0 −→ H(mD) −→ F(mD) −→ G(mD) −→ 0,

where G = F ⊗ OX and H(mD) is coherent. Then for m sufficient
large,

hi(Y,F(mD)) = hi(Y,H(mD)).

On the other hand, H is a coherent sheaf supported on the proper
subscheme Y ′ ⊂ Y defined by Ik−1, and we are done by induction on
k.

Let X ′ = Xred and Y ′ = Yred. Since taking the reduction is a functor,
there is a commutative square

X ′ - X

Y ′

f ′

?
- Y,

f

?

where f ′ = fred. We may pullback D to X ′ either way around the
square and we get the same answer both ways. It follows that to prove
that D is ample, it suffices to prove that D′ = Dred is ample. Thus,
replacing f : X −→ Y by f ′ : X ′ −→ Y ′, we may assume that X and
Y are projective varieties.

Now suppose that Y = Y1 ∪ Y2 is the union of two closed subvari-
eties, let X be their disjoint union and let f : X −→ Y be the obvious
morphism. If F is any coherent sheaf, then there is an exact sequence

0 −→ F(mD) −→ f ∗F(mD) = F1(mD)⊕F2(mD) −→ G(mD) −→ 0,

where Fi = F ⊗OYi
= FYi

is the restriction of F to Yi and G is a sheaf
supported on Z = Y1 ∩ Y2. By (1) applied to either of the inclusions
Z −→ Yi, D|Z is ample. Moreover for m sufficiently large both of the
natural maps,

H0(Yi,Fi(mD)) −→ H0(Z,G(mD)),

are surjective. Taking the long exact sequence of cohomology, we see
that

H i(X,F(mD)) = 0,

is zero, for i > 0 and m sufficiently large, since it is easy to see directly
that

H0(Y1,F1(mD))⊕H0(Y2,F2(mD)) −→ H0(Z,G(mD)),

is surjective, for m sufficiently large.
Using the same argument and the same square as before (but where

X ′ and Y ′ are now the irreducible components of X and Y ) we may
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assume thatX and Y are integral. Now the proof proceeds by induction
on the dimension of X (and so of Y ).

Let F be a sheaf on Y .

Claim 3.5. There is a sheaf G on X and a map

f∗G −→
k⊕

i=1

F ,

which is an isomorphism over an open subset of Y , where k is the
degree of the map f .

Proof of (3.5). Note that k is the degree of the field extensionK(X)/K(Y ).
Pick an affine subset U of X and pick sections s1, s2, . . . , sk ∈ OU which
generate the field extension K(X)/K(Y ). Let M be the coherent sheaf
generated by the sections s1, s2, . . . , sk ∈ K(Y ). Then there is a mor-
phism of sheaves

k⊕
i=1

OY −→ f∗M,

which is an isomorphism over an open subset of Y . Taking HomOY
, we

get a morphism of sheaves

HomOY
(f∗M,F) −→ HomOY

(
k⊕

i=1

OY ,F) '
k⊕

i=1

F .

Finally observe that

Hom(f∗M,OY ) = f∗G,
for some coherent sheaf G on X. �

Thus there is an exact sequence

0 −→ K(mD) −→ f∗G(mD) −→
k⊕

i=1

F(mD) −→ Q(mD) −→ 0,

where K and Q are defined to preserve exactness. We may break this
exact sequence into two parts,

0 −→ H(mD) −→
k⊕

i=1

F(mD) −→ Q(mD) −→ 0

0 −→ K(mD) −→ f∗G(mD) −→ H(mD) −→ 0,

where H is a coherent sheaf. Note that the support of the sheaves
K and Q is smaller than the support of F . But then by induction
any twist of their higher cohomology must vanish, for m sufficiently
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large. Since the higher cohomology of f∗G(mD) also vanishes, as f ∗D
is ample, looking at the first exact sequence, we have that

H i(Y,H(mD)) = 0,

for i > 0 andm sufficiently large. Looking at the second exact sequence,
it follows that

H i(X,F(mD)) = 0,

for all m sufficiently large. �

Lemma 3.6. Let X be a projective variety and let D be a Q-Cartier
divisor.

If H is an ample divisor then there is an integer m0 such that D+mH
is ample for all m ≥ m0.

Proof. By induction on the dimension n of X. By (3.4) we may assume
that X is normal. It is straightforard to check that a divisor on a curve
is ample if and only if its degree is positive. In particular this result is
easy for n ≤ 1.

So suppose that n > 1. Replacing D and H by a multiple we may
assume that D is Cartier, so that it is in particular an integral Weil
divisor and we may assume that H is very ample. Let x 6= y ∈ X be
any two points of X and let Y ∈ |H| be a general element containing
x and y. Then Y is a projective variety and there is an exact sequence

0 −→ OX(kD+(m−1)H) −→ OX(kD+mH) −→ OY (kD+mH) −→ 0.

By induction on the dimension there is an integer m0 such that (D +
mH))|Y is ample for all m ≥ m0. Pick a positive integer k such that
k(D+mH)|Y is very ample. By Serre vanishing, possibly replacing m0

by a larger integer, we may assume that (kD + mH)|Y is very ample
and that

H i(X,OX(kD +mH)) = 0,

for all m ≥ m0 and i > 0. In particular

H0(X,OX(kD +mH)) −→ H0(Y,OY (kD +mH)),

is surjective. By assumption we may find B ∈ |(kD+mH)|Y | contain-
ing x but not containing y and we may lift this to B′ ∈ |(kD + mH)|
containing x by not containing y. It follows that φkD+mH : X −→ PN

is an injective morphism, whence it is a finite morphism. But then
kD +mH is the pullback of an ample divisor under a finite morphism
and so it must be ample. �

Definition-Lemma 3.7. Let X be a variety and let L/K(X) be a
finite field extension.
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We may find a normal variety Y and a finite morphism f : Y −→ X
such that K(Y )/K(X) is isomorphic to L/K(X).

Proof. We may coverX finitely many open affine varieties Ui = SpecAi.
Let Bi be the integral closure of Ai in L/K. Then Vi = SpecBi is an
affine variety there is a finite morphism Vi −→ Ui and K(Vi)/K(Ui) '
L/K(X). The variety Y is obtained by gluing Vi together. �

Definition-Theorem 3.8 (Stein factorisation). Let f : X −→ Y be a
morphism of normal varieties. There is a factorisation of f = h◦g into
a morphism g : X −→ Z with connected fibres and a finite morphism
h : Z −→ Y .

Proof. Let Z = SpecY f∗OX . Then h : Z −→ Y is finite and there is a
morphism g : X −→ Z. By construction g∗OX = OZ . It follows by a
result of Zariski that the fibres of g are connected. �

Lemma 3.9. Let f : X −→ Y be a morphism of projective varieties
and let D be a Q-Cartier divisor on Y .

(1) If D is semiample then f ∗D is semiample.
(2) If Y is normal, f is surjective and f ∗D is semiample then D is

semiample.

Proof. Suppose that D is semiample. Then |mD| is base point free for
some m ∈ N. Pick x ∈ X. By assumption we may find D′ ∈ |mD|
not containing y = f(x). But then f ∗D′ ∈ |mf ∗D| does not contain x.
Thus |mf ∗D| is base point free and so f ∗D is semiample. This proves
(1).

Now suppose that Y is normal, f is surjective and f ∗D is semiample.
Considering the Stein factorisation of f , we only need to prove (2) in
the two special cases when f is finite and when f has connected fibres.

First assume that f is a finite morphism of normal varieties. Then
we may find a morphism g : W −→ X such that the composition h =
f ◦ g : W −→ Y is Galois (take W to be the normalisation of X in
the Galois closure of K(X)/K(Y )). By what we already proved g∗D is
semiample. Replacing f by h, we may assume that f is Galois, so that
Y = X/G for some finite group G. Pick m so that mf ∗D is base point
free. Let y ∈ Y and x1, x2, . . . , xk ∈ X be the finitely many points lying
over y. Pick σ ∈ H0(X,OX(mf ∗D)) not vanishing at any one of the
points x1, x2, . . . , xk. Let σ1, σ2, . . . , σl be the Galois conjugates of σ.
Then each σi does not vanish at each xj and

∏l
i=1 σi is G-invariant, so

that it is the pullback of a section τ ∈ H0(Y,OY (mlD)) not vanishing
at y. But then D is semiample.

Now suppose that the fibres of f are connected. Suppose that f ∗D
is semiample. Then |mf ∗D| is base point free for some m > 0. In this

8



case
H0(X,OX(mf ∗D)) = H0(Y,OY (mD)).

Pick y ∈ Y . Let x be a point of the fibre Xy = f−1(y). Then there
is a divisor D′ ∈ |mf ∗D| not containing x. But D′ = f ∗D′′ where
D′′ ∈ |mD|. Since D′ does not contain x, D′′ does not contain y. But
then D is semiample. �
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