
4. Asymptotic Riemann-Roch

Theorem 4.1 (Asymptotic Riemann-Roch). Let X be a normal pro-
jective variety and let D and E be two integral Weil divisors.

If D is Cartier then

P (m) = χ(OX(mD + E)) =
Dnmn

n!
+
Dn−1 · (KX − 2E)mn−1

2(n− 1)!
. . . ,

is a polynomial of degree at most n = dimX, where dots indicate lower
order terms.

Since the case of curves is a little bit special we treat this case sep-
arately:

Lemma 4.2. Let C be a smooth curve of genus g and let D be a divisor
of degree d.

Then

χ(OC(D)) = d− g + 1.

Proof. Let E be any divisor of degree e and let p be any point. There
is an exact sequence

0 −→ OC(−p) −→ OC −→ Op −→ 0.

Here Op is a skyscraper sheaf, supported at the single point p. Twisting
by the divisor E + p we have

0 −→ OC(E) −→ OC(E + p) −→ Op(E) −→ 0.

Taking the long exact sequence associated to the short exact sequence
and using the additivity of the Euler characteristic we have:

χ(OC(E + p)) = χ(OC(E)) + χ(Op) = χ(OC(E)) + 1,

where we used the fact that h1(C,Op) = 0. Since the formula on
the RHS of Riemann-Roch is linear it follows that the Riemann-Roch
formula holds for E if and only if the Riemann-Roch formula holds for
E + p.

Any divisor is the difference of two effective divisors D = D1 −D2,
Di ≥ 0. If p is a point of the support of D2 then it suffices to prove
the formula for D + p. By induction on the degree of D2 we reduce to
the case D = D1 ≥ 0. If p is a point of the support of D it suffices to
prove the result for D − p. By induction on the degree of D it suffices
to prove the result when the degree is zero. But then D = 0 so that

χ(OC(D)) = h0(C,OC)− h1(C,OC) = 1− g. �
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Lemma 4.3. Let X be a normal variety and let H be a very ample
divisor.

If Y ∈ |H| is general then Y is normal.

Proof. X is normal if and only if it is regular in codimension one and
S2. Y is smooth in codimension one by Bertini. As X is S2 the set
of points where X is not Cohen-Macaulay is of codimension three or
more. As Y does not contain any of the generic points of this set, Y is
S2. �

Proof of (4.1). By induction on the dimension n of X. Suppose that
n = 1. Then X is a smooth curve. Riemann-Roch for mD + E then
reads

χ(OX(mD + E)) = md+ e− g + 1 = am− b,
where

a = d =
degD

1!
and b = g − 1− e =

deg(KX − 2E)

2 · 1!
.

Now suppose that n > 1. Pick a very ample divisor H, which is a
general element of the linear system |H|, such that H + D is very
ample and let G ∈ |D + H| be a general element. Then G and H are
normal projective varieties and there are two exact sequences

0 −→ OX(mD+E) −→ OX(mD+E+H) −→ OH(mD+E+H) −→ 0,

and

0 −→ OX((m−1)D+E) −→ OX(mD+E+H) −→ OG(mD+E+H) −→ 0.

Hence

χ(X,OX(mD + E))− χ(X,OX(mD + E +H)) = −χ(H,OH(mD + E +H))

χ(X,OX((m− 1)D + E))− χ(X,OX(mD + E +H)) = −χ(G,OG(mD + E +H)),

and taking the difference we get

P (m)− P (m− 1) = χ(G,OG(mD + E +H))− χ(H,OH(mD + E +H))

=
(Dn−1 ·G−Dn−1 ·H)mn−1

(n− 1)!
+ . . .

=
Dnmn−1

(n− 1)!
+ . . . ,

is a polynomial of degree n−1, by induction on the dimension. The re-
sult follows by standard results on the difference polynomial ∆P (m) =
P (m+ 1)− P (m). �

It is fun to use similar arguments to prove special cases of Riemann-
Roch.
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Theorem 4.4 (Riemann-Roch). Let C be a smooth curve of genus g
and let D be an integral divisor on X of degree d. Then

h0(C,OC(D)) = d− g + 1 + h0(C,OC(KC −D)).

Proof. Follows from Serre duality and (4.1). �

Theorem 4.5 (Riemann-Roch for surfaces). Let S be a smooth pro-
jective surface of irregularity q and geometric genus pg over an alge-
braically closed field of characteristic zero. Let D be a divisor on S.

χ(S,OS(D)) =
D2

2
− KS ·D

2
+ 1− q + pg.

Proof. Pick a very ample divisor H such that H+D is very ample. Let
C and Σ be general elements of |H| and |H + D|. Then C and Σ are
smooth. There are two exact sequences

0 −→ OS(D) −→ OS(D +H) −→ OC(D +H) −→ 0

and
0 −→ OS −→ OS(D +H) −→ OΣ(D +H) −→ 0.

As the Euler characteristic is additive we have

χ(S,OS(D +H)) = χ(S,OS(D)) + χ(C,OC(D +H))

χ(S,OS(D +H)) = χ(S,OS) + χ(Σ,OΣ(D +H)).

Subtracting we get

χ(S,OS(D))− χ(S,OS) = χ(Σ,OΣ(D +H))− χ(C,OC(D +H)).

Now

χ(Σ,OΣ(D +H)) = (D +H) · Σ− degKΣ/2

χ(C,OC(D +H)) = (D +H) · C − degKC/2,

applying Riemann-Roch for curves to both C and Σ. We have

(D +H) · Σ = (D +H) ·H + (D +H) ·D,
and by adjunction

KΣ = (KS + Σ) · Σ and KC = (KS + C) · C.
So putting all of this together we get

χ(S,OS(D))− χ(S,OS) = (D +H) ·D +
1

2
((KS + C) · C − (KS + Σ) · Σ)

= (D +H) ·D +
1

2
KS · (C − Σ) +

1

2
(H ·H − (H +D) · (H +D))

=
D ·D

2
− 1

2
KS ·D.
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We have

c = χ(S,OS) = h0(S,OS)− h1(S,OS) + h2(S,OS) = 1− q + pg.

Here we used the highly non-trivial fact that

h1(S,OS) = h0(S,Ω1
S) = q,

from Hodge theory and Serre duality

h2(S,OS) = h0(S, ωS) = pg. �

Remark 4.6. One can turn Riemann-Roch for surfaces around and
use the arguments in the proof of (4.5) to prove basic properties of the
intersection number.
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