4. Asymptotic Riemann-Roch

Theorem 4.1 (Asymptotic Riemann-Roch). Let X be a normal projective variety and let D and E be two integral Weil divisors.

If D is Cartier then

$$
P(m)=\chi\left(\mathcal{O}_{X}(m D+E)\right)=\frac{D^{n} m^{n}}{n!}+\frac{D^{n-1} \cdot\left(K_{X}-2 E\right) m^{n-1}}{2(n-1)!} \ldots,
$$

is a polynomial of degree at most $n=\operatorname{dim} X$, where dots indicate lower order terms.

Since the case of curves is a little bit special we treat this case separately:

Lemma 4.2. Let C be a smooth curve of genus g and let D be a divisor of degree d.

Then

$$
\chi\left(\mathcal{O}_{C}(D)\right)=d-g+1
$$

Proof. Let E be any divisor of degree e and let p be any point. There is an exact sequence

$$
0 \longrightarrow \mathcal{O}_{C}(-p) \longrightarrow \mathcal{O}_{C} \longrightarrow \mathcal{O}_{p} \longrightarrow 0
$$

Here \mathcal{O}_{p} is a skyscraper sheaf, supported at the single point p. Twisting by the divisor $E+p$ we have

$$
0 \longrightarrow \mathcal{O}_{C}(E) \longrightarrow \mathcal{O}_{C}(E+p) \longrightarrow \mathcal{O}_{p}(E) \longrightarrow 0
$$

Taking the long exact sequence associated to the short exact sequence and using the additivity of the Euler characteristic we have:

$$
\chi\left(\mathcal{O}_{C}(E+p)\right)=\chi\left(\mathcal{O}_{C}(E)\right)+\chi\left(\mathcal{O}_{p}\right)=\chi\left(\mathcal{O}_{C}(E)\right)+1,
$$

where we used the fact that $h^{1}\left(C, \mathcal{O}_{p}\right)=0$. Since the formula on the RHS of Riemann-Roch is linear it follows that the Riemann-Roch formula holds for E if and only if the Riemann-Roch formula holds for $E+p$.

Any divisor is the difference of two effective divisors $D=D_{1}-D_{2}$, $D_{i} \geq 0$. If p is a point of the support of D_{2} then it suffices to prove the formula for $D+p$. By induction on the degree of D_{2} we reduce to the case $D=D_{1} \geq 0$. If p is a point of the support of D it suffices to prove the result for $D-p$. By induction on the degree of D it suffices to prove the result when the degree is zero. But then $D=0$ so that

$$
\chi\left(\mathcal{O}_{C}(D)\right)=h^{0}\left(C, \mathcal{O}_{C}\right)-h^{1}\left(C, \mathcal{O}_{C}\right)=1-g
$$

Lemma 4.3. Let X be a normal variety and let H be a very ample divisor.

If $Y \in|H|$ is general then Y is normal.
Proof. X is normal if and only if it is regular in codimension one and $S_{2} . Y$ is smooth in codimension one by Bertini. As X is S_{2} the set of points where X is not Cohen-Macaulay is of codimension three or more. As Y does not contain any of the generic points of this set, Y is S_{2}.

Proof of (4.1). By induction on the dimension n of X. Suppose that $n=1$. Then X is a smooth curve. Riemann-Roch for $m D+E$ then reads

$$
\chi\left(\mathcal{O}_{X}(m D+E)\right)=m d+e-g+1=a m-b
$$

where

$$
a=d=\frac{\operatorname{deg} D}{1!} \quad \text { and } \quad b=g-1-e=\frac{\operatorname{deg}\left(K_{X}-2 E\right)}{2 \cdot 1!} .
$$

Now suppose that $n>1$. Pick a very ample divisor H, which is a general element of the linear system $|H|$, such that $H+D$ is very ample and let $G \in|D+H|$ be a general element. Then G and H are normal projective varieties and there are two exact sequences
$0 \longrightarrow \mathcal{O}_{X}(m D+E) \longrightarrow \mathcal{O}_{X}(m D+E+H) \longrightarrow \mathcal{O}_{H}(m D+E+H) \longrightarrow 0$,
and
$0 \longrightarrow \mathcal{O}_{X}((m-1) D+E) \longrightarrow \mathcal{O}_{X}(m D+E+H) \longrightarrow \mathcal{O}_{G}(m D+E+H) \longrightarrow 0$.
Hence

$$
\begin{aligned}
\chi\left(X, \mathcal{O}_{X}(m D+E)\right)-\chi\left(X, \mathcal{O}_{X}(m D+E+H)\right) & =-\chi\left(H, \mathcal{O}_{H}(m D+E+H)\right) \\
\chi\left(X, \mathcal{O}_{X}((m-1) D+E)\right)-\chi\left(X, \mathcal{O}_{X}(m D+E+H)\right) & =-\chi\left(G, \mathcal{O}_{G}(m D+E+H)\right)
\end{aligned}
$$ and taking the difference we get

$$
\begin{aligned}
P(m)-P(m-1) & =\chi\left(G, \mathcal{O}_{G}(m D+E+H)\right)-\chi\left(H, \mathcal{O}_{H}(m D+E+H)\right) \\
& =\frac{\left(D^{n-1} \cdot G-D^{n-1} \cdot H\right) m^{n-1}}{(n-1)!}+\ldots \\
& =\frac{D^{n} m^{n-1}}{(n-1)!}+\ldots
\end{aligned}
$$

is a polynomial of degree $n-1$, by induction on the dimension. The result follows by standard results on the difference polynomial $\Delta P(m)=$ $P(m+1)-P(m)$.

It is fun to use similar arguments to prove special cases of RiemannRoch.

Theorem 4.4 (Riemann-Roch). Let C be a smooth curve of genus g and let D be an integral divisor on X of degree d. Then

$$
h^{0}\left(C, \mathcal{O}_{C}(D)\right)=d-g+1+h^{0}\left(C, \mathcal{O}_{C}\left(K_{C}-D\right)\right) .
$$

Proof. Follows from Serre duality and 4.1).
Theorem 4.5 (Riemann-Roch for surfaces). Let S be a smooth projective surface of irregularity q and geometric genus p_{g} over an algebraically closed field of characteristic zero. Let D be a divisor on S.

$$
\chi\left(S, \mathcal{O}_{S}(D)\right)=\frac{D^{2}}{2}-\frac{K_{S} \cdot D}{2}+1-q+p_{g}
$$

Proof. Pick a very ample divisor H such that $H+D$ is very ample. Let C and Σ be general elements of $|H|$ and $|H+D|$. Then C and Σ are smooth. There are two exact sequences

$$
0 \longrightarrow \mathcal{O}_{S}(D) \longrightarrow \mathcal{O}_{S}(D+H) \longrightarrow \mathcal{O}_{C}(D+H) \longrightarrow 0
$$

and

$$
0 \longrightarrow \mathcal{O}_{S} \longrightarrow \mathcal{O}_{S}(D+H) \longrightarrow \mathcal{O}_{\Sigma}(D+H) \longrightarrow 0
$$

As the Euler characteristic is additive we have

$$
\begin{aligned}
& \chi\left(S, \mathcal{O}_{S}(D+H)\right)=\chi\left(S, \mathcal{O}_{S}(D)\right)+\chi\left(C, \mathcal{O}_{C}(D+H)\right) \\
& \chi\left(S, \mathcal{O}_{S}(D+H)\right)=\chi\left(S, \mathcal{O}_{S}\right)+\chi\left(\Sigma, \mathcal{O}_{\Sigma}(D+H)\right)
\end{aligned}
$$

Subtracting we get

$$
\chi\left(S, \mathcal{O}_{S}(D)\right)-\chi\left(S, \mathcal{O}_{S}\right)=\chi\left(\Sigma, \mathcal{O}_{\Sigma}(D+H)\right)-\chi\left(C, \mathcal{O}_{C}(D+H)\right)
$$

Now

$$
\begin{aligned}
& \chi\left(\Sigma, \mathcal{O}_{\Sigma}(D+H)\right)=(D+H) \cdot \Sigma-\operatorname{deg} K_{\Sigma} / 2 \\
& \chi\left(C, \mathcal{O}_{C}(D+H)\right)=(D+H) \cdot C-\operatorname{deg} K_{C} / 2
\end{aligned}
$$

applying Riemann-Roch for curves to both C and Σ. We have

$$
(D+H) \cdot \Sigma=(D+H) \cdot H+(D+H) \cdot D,
$$

and by adjunction

$$
K_{\Sigma}=\left(K_{S}+\Sigma\right) \cdot \Sigma \quad \text { and } \quad K_{C}=\left(K_{S}+C\right) \cdot C .
$$

So putting all of this together we get

$$
\begin{aligned}
\chi\left(S, \mathcal{O}_{S}(D)\right)-\chi\left(S, \mathcal{O}_{S}\right) & =(D+H) \cdot D+\frac{1}{2}\left(\left(K_{S}+C\right) \cdot C-\left(K_{S}+\Sigma\right) \cdot \Sigma\right) \\
& =(D+H) \cdot D+\frac{1}{2} K_{S} \cdot(C-\Sigma)+\frac{1}{2}(H \cdot H-(H+D) \cdot(H+D)) \\
& =\frac{D \cdot D}{2}-\frac{1}{2} K_{S} \cdot D
\end{aligned}
$$

We have

$$
c=\chi\left(S, \mathcal{O}_{S}\right)=h^{0}\left(S, \mathcal{O}_{S}\right)-h^{1}\left(S, \mathcal{O}_{S}\right)+h^{2}\left(S, \mathcal{O}_{S}\right)=1-q+p_{g} .
$$

Here we used the highly non-trivial fact that

$$
h^{1}\left(S, \mathcal{O}_{S}\right)=h^{0}\left(S, \Omega_{S}^{1}\right)=q,
$$

from Hodge theory and Serre duality

$$
h^{2}\left(S, \mathcal{O}_{S}\right)=h^{0}\left(S, \omega_{S}\right)=p_{g}
$$

Remark 4.6. One can turn Riemann-Roch for surfaces around and use the arguments in the proof of (4.5) to prove basic properties of the intersection number.

