6. Ampleness criteria

We return to the problem of determining when a line bundle is ample.

Theorem 6.1 (Nakai-Moishezon). Let X be a normal projective variety and let D be a \mathbb{Q}-Cartier divisor.

TFAE

1. D is ample.
2. For every subvariety $V \subset X$ of dimension k,
 \[D^k \cdot V > 0. \]

Proof. Suppose that D is ample. Then mD is very ample for some $m > 0$. Let $\phi: X \rightarrow \mathbb{P}^N$ be the corresponding embedding. Then $mD = \phi^*H$, where H is a hyperplane in \mathbb{P}^N. Then
 \[D^k \cdot V = \frac{1}{m^k}H^k \cdot \phi(V) > 0, \]
 since intersecting $\phi(V)$ with H^k corresponds to intersecting V with a linear space of dimension $N - k$. But this is nothing more than the degree of $\phi(V)$ in projective space.

Now suppose that D satisfies (2). Let H be a general element of a very ample linear system. Then we have an exact sequence
 \[0 \rightarrow \mathcal{O}_X(pD + (q - 1)H) \rightarrow \mathcal{O}_X(pD + qH) \rightarrow \mathcal{O}_H(pD + qH) \rightarrow 0. \]
By induction, $D|_H$ is ample. It is straightforward to prove that
 \[h^i(H, \mathcal{O}_H(pD + qH)) = 0, \]
for $i > 0$, p sufficiently large and any $q > 0$, by induction on the dimension. In particular,
 \[h^i(X, \mathcal{O}_X(pD + (q - 1)H)) = h^i(X, \mathcal{O}_X(pD + qH)), \]
for $i > 1$, p sufficiently large and any $q \geq 1$. By Serre vanishing the last group vanishes for q sufficiently large. Thus by descending induction
 \[h^i(X, \mathcal{O}_X(pD + qH)) = 0, \]
for all $q \geq 0$. Thus by (4.1) it follows that
 \[h^0(X, \mathcal{O}_X(mD)) \neq 0, \]
for m sufficiently large, that is, $|mD|$ is non-empty. As usual, this means that we may assume that $D \geq 0$ is Cartier. Let $\nu: \tilde{D} \rightarrow D_{\text{red}}$ be the normalisation of D_{red}, the reduced subscheme associated to D. Then $\nu^*D|_{D_{\text{red}}}$ is ample by induction. It follows by (3.4) that $D|_{D}$ is ample.
I claim that the map
\[\rho_m : H^0(X, \mathcal{O}_X(mD)) \longrightarrow H^0(D, \mathcal{O}_D(mD)), \]
is surjective for \(m \) sufficiently large. Consider the exact sequence
\[0 \longrightarrow \mathcal{O}_X((m - 1)D) \longrightarrow \mathcal{O}_X(mD) \longrightarrow \mathcal{O}_D(mD) \longrightarrow 0. \]
As \(D|_D \) is ample,
\[h^i(D, \mathcal{O}_D(mD)) = 0, \]
for \(i > 0 \) and \(m \) sufficiently large, by Serre vanishing. Thus
\[h^1(X, \mathcal{O}_X(mD)) \leq h^1(X, \mathcal{O}_X((m-1)D)) \quad \text{and} \quad h^i(X, \mathcal{O}_X(mD)) = 0, \]
for \(i > 1 \), with equality if and only if \(\rho_m \) is surjective. Since
\[h^1(X, \mathcal{O}_X(mD)), \]
is finite dimensional, its dimension cannot drop infinitely often, and so \(\rho_m \) is surjective as claimed.

As \(D|_D \) is ample, \((mD)|_D \) is very ample. As we can lift sections, it follows that \(|mD| \) is base point free, that is, \(D \) is semiample. Let \(\phi = \phi_{mD} : X \longrightarrow \mathbb{P}^N \) be the corresponding morphism. Then \(D = \phi^*H \).

Suppose that \(C \) is a curve contracted by \(\phi \). Then
\[D \cdot C = \phi^*H \cdot C = H \cdot \phi_*C = 0, \]
a contradiction. But then \(\phi_{mD} \) is a finite morphism and \(D = \phi^*H \) is ample by (3.4). \(\square \)

Definition 6.2. Let \(X \) be a normal projective variety and let \(D \) be a \(\mathbb{Q} \)-Cartier divisor. We say that \(D \) is **nef** if \(D \cdot C \geq 0 \) for all curves \(C \subset X \).

Lemma 6.3. Let \(X \) be a normal variety and let \(D \) be a \(\mathbb{Q} \)-Cartier divisor.

If \(D \) is semiample then \(D \) is nef.

Proof. By assumption there is a morphism \(\phi : X \longrightarrow Y \subset \mathbb{P}^n \) such that
\[mD = \phi^*H. \]
But then
\[D \cdot C = \frac{1}{m} \phi^*C \cdot H \geq 0. \]
\(\square \)

Lemma 6.4. Let \(X \) be a normal projective variety and let \(D \) be a \(\mathbb{Q} \)-Cartier divisor.

TFAE

1. \(D + H \) is ample for any ample \(\mathbb{Q} \)-divisor \(H \).
(2) If $V \subset X$ is any subvariety of X then

$$D^k \cdot V \geq 0,$$

where V has dimension k.

(3) D is nef.

Proof. (1) implies (2) and (2) implies (3) are clear. (2) implies (1) follows from Nakai-Moishezon.

Suppose that D is nef. By induction on $n = \dim X$ it suffices to prove that

$$D^n \geq 0.$$

Pick an ample divisor H. Then $D + tH$ is nef for all $t \geq 0$. We have

$$f(t) = (D + tH)^n = \sum \binom{n}{i} D^i H^{n-i} t^n t^{-i},$$

is a polynomial in t, all of whose terms are non-negative, except maybe the constant term, which tends to infinity as t tends to infinity. Suppose that $D^n \leq 0$. Then there is a real number $t_0 \in [0, \infty)$ such that

$$f(t_0) = 0,$$

and $f(t) > 0$ for all $t > t_0$. Pick $t > t_0$ rational. Then $D + tH$ is ample, by Nakai’s criteria. In particular we may find a divisor $B \in |k(D + tH)|$ for some positive integer k. We may write

$$f(t) = t^n H^n + \sum \binom{n-1}{i} t^i (H + tD)^{n-i-1} D.$$

Consider the product $H^i (H + tD)^{n-i-1}$. Pick k such that kH is very ample and pick l such that $l(H + tD)$ is very ample. Pick general elements $H_1, H_2, \ldots, H_i \in |kH|$ and $G_1, G_2, \ldots, G_{n-i-1} \in |l(H + tD)|$. Then the intersection

$$C = H_1 \cdot H_2 \cdots H_i \cdot G_1 \cdot G_2 \cdots G_{n-i-1} \equiv \frac{1}{kil^{n-i-1}} H^i \cdot (H + tD)^{n-i-1},$$

is a smooth curve (here \equiv denotes numerical equivalence, meaning that both sides dot with any Cartier divisor the same). Thus every term is non-negative, as $D \cdot C \geq 0$. But then

$$0 = f(t_0) = \lim_{t \to t_0} f(t) \geq t_0^n H^n.$$

Thus $t_0 = 0$, and $D^n \geq 0$.

Lemma 6.5. Let X be a normal projective variety and let $\pi: Y \to X$ blow up a smooth point p of X.

Then $E^n = (-1)^{n-1}$.

3
Proof. Since this result is local in the analytic topology, we may as
well assume that $X = \mathbb{P}^n$. Choose coordinates x_1, x_2, \ldots, x_n about
the point p. Then coordinates on $Y \subset \mathbb{A}^n \times \mathbb{P}^{n-1}$ are given by the equations

$$x_iY_j = x_jY_i.$$

(These equations simply express the fact that (x_1, x_2, \ldots, x_n) defines
the point $[Y_1 : Y_2 : \cdots : Y_n] \in \mathbb{P}^{n-1}$.) On the coordinate chart $Y_n \neq 0,$
we have affine coordinates $y_i = Y_i/Y_n$ on \mathbb{P}^{n-1} and since

$$x_i = x_ny_i,$$

it follows that $x_n, y_1, y_2, \ldots, y_{n-1}$ are coordinates on Y, and the ex-
ceptional divisor is given locally by $x_n = 0$. Let H be the class of a
hyperplane in \mathbb{P}^n which passes through p. Then we may assume that
H is given by $x_1 = 0$. Since $x_1 = x_ny_1$ it follows that

$$\pi^*H = G + E,$$

where G defined by $y_1 = 0$, is the strict transform of H. Now $G|_E$
restricts to a hyperplane in E. Thus

$$E|_E = -G|_E,$$

since E pushes forward to zero. But then

$$E^n = (E|_E)^{n-1} = (-1)^{n-1}.$$

□

Definition-Lemma 6.6 (Kodaira’s Lemma). Let X be a normal pro-
jective variety of dimension n and let D be a \mathbb{Q}-Cartier divisor.

TFAE

(1) $h^0(X, \mathcal{O}_X(mD)) > \alpha m^n$, for some constant $\alpha > 0$, for any m
which is sufficiently divisible.

(2) $D \sim_\mathbb{Q} A + E$, where A is an ample divisor and $E \geq 0$.

If further D is nef then these conditions are equivalent to

(3) $D^n > 0$.

If any of these conditions hold we say that D is **big**.

Proof. Let $H \geq 0$ be any ample Cartier divisor. If m is sufficiently
large, then

$$h^i(X, \mathcal{O}_X(mH)) = 0,$$

so that by Asymptotic Riemann Roch there are positive constants α_i
such that

$$\alpha_1m^n < h^0(X, \mathcal{O}_X(mH)) < \alpha_2m^n,$$

for all m. Now let G be any divisor. Pick $k > 0$ such that $G + kH$ is
ample. Then

$$h^0(X, \mathcal{O}_X(mG)) \leq h^0(X, \mathcal{O}_X(mG + mkH)) \leq \beta m^n,$$
for some constant β_1.

Suppose that (1) holds. Let H be an ample Cartier divisor. Then there is an exact sequence

$$0 \rightarrow \mathcal{O}_X(mD - H) \rightarrow \mathcal{O}_X(mD) \rightarrow \mathcal{O}_H(mD) \rightarrow 0.$$

Now

$$h^0(H, \mathcal{O}_H(mD)) \leq \beta m^{n-1},$$

for some constant β. It follows that

$$h^0(X, \mathcal{O}_X(mD - H)) > \alpha m^n.$$

In particular we may find B such that

$$B \in |mD - H|.$$

But then

$$D \sim_{\mathbb{Q}} H/m + B/m = A + E.$$

Thus (1) implies (2).

How suppose that (2) holds. Replacing D by a multiple, we may assume that $D \sim A + E$. But then

$$h^0(X, \mathcal{O}_X(mD)) \geq h^0(X, \mathcal{O}_X(mA)) > \alpha m^n,$$

for some constant $\alpha > 0$. Thus (2) implies (1).

Now suppose that D is nef. Assume that (2) holds. We may assume that A is very ample and a general element of $|A|$. Then

$$D^n = A \cdot D^{n-1} + E \cdot D^{n-1} \geq (D|_A)^{n-1} > 0,$$

by induction on the dimension. Thus (2) implies (3).

Finally suppose that (3) holds. Let $\pi: Y \rightarrow X$ be a birational morphism such that Y is smooth. Since $G = \pi^* D$ is nef, $G^n = D^n$ and

$$h^0(Y, \mathcal{O}_Y(mG)) = h^0(X, \mathcal{O}_X(mD)),$$

replacing X by Y and D by G, we may assume that X is smooth. Pick a very ample divisor H, a general element of $|H|$, such that $H + K_X$ is also very ample and let $G \in |H + K_X|$ be a general element. There is an exact sequence

$$0 \rightarrow \mathcal{O}_X(mD) \rightarrow \mathcal{O}_X(mD + G) \rightarrow \mathcal{O}_G(mD + G) \rightarrow 0.$$

Now

$$h^i(X, \mathcal{O}_X(mD + G)) = h^i(X, \mathcal{O}_X(K_X + H + mD)) = 0$$

for $i > 0$ and $m \geq 0$ by Kodaira vanishing, as $H + mD$ is ample. Thus

$$\chi(X, \mathcal{O}_X(mD + G)) > \alpha m^n,$$
for some constant $\alpha > 0$. Since
\[h^0(G, \mathcal{O}_G(mD + G)) < \beta m^{n-1}, \]
for some constant β, (3) implies (1). \hfill \square

Theorem 6.7 (Seshadri’s criteria). Let X be a normal projective variety and let D be a \mathbb{Q}-divisor.

TFAE

(1) D is ample.
(2) For every point $x \in X$, there is a positive constant $\epsilon = \epsilon(x) > 0$ such that for every curve C,
\[D \cdot C > \epsilon \text{mult}_x C, \]
where $\text{mult}_x C$ is the multiplicity of the point x on C.

Proof. Suppose that D is ample. Then mD is very ample for some positive integer m. Let C be a curve with a point x of multiplicity k. Pick y any other point of C. Then we may find $H \in |mD|$ containing x and not containing y. In this case
\[(mD) \cdot C = H \cdot C \geq k, \]
so that $\epsilon = 1/m$ will do. Thus (1) implies (2).

Now assume that (2) holds. We check the hypotheses for Nakai’s criteria. By induction on the dimension n of X it suffices to check that $D^n > 0$. Let $\pi: Y \to X$ be the blow up of X at x, a smooth point of X, with exceptional divisor E. Consider $\pi^*D - \eta E$, for any $0 < \eta < \epsilon$. Let $\Sigma \subset Y$ be any curve on Y. If Σ is contained in E, then
\[(\pi^*D - \eta E) \cdot \Sigma = -E \cdot \Sigma > 0. \]
Otherwise let C be the image of Σ. If the multiplicity of C at x is m, then $E \cdot \Sigma = m$. Thus
\[(\pi^*D - \eta E) \cdot \Sigma = D \cdot C - \eta m > 0, \]
by definition of ϵ. It follows that $\pi^*D - \eta E$ is nef and so $\pi^*D - \epsilon E$ is nef. By (6.4) it follows that the polynomial
\[f(t) = (\pi^*D - tE)^n, \]
of degree n in t is non-negative. On the other hand, note that $E^n = \pm 1 \neq 0$. Thus the polynomial $f(t)$ is not constant. Thus $f(\eta) > 0$, some $0 < \eta < \epsilon$. It follows that
\[h^0(X, \mathcal{O}_X(mD)) \geq h^0(Y, \mathcal{O}_X(m\pi^*D - m\eta E)) > 0, \]
for m sufficiently large and divisible. It follows easily that $D^n > 0$. \hfill \square
One of the most interesting aspects of Seshadri’s criteria is that gives a local measure of ampleness:

Definition 6.8. Let X be a normal variety, and let D be a nef \mathbb{Q}-Cartier divisor. Given a point $x \in X$, let $\pi : Y \to X$ be the blow up of X at x. The real number

$$\epsilon(D, x) = \inf \{ \epsilon \mid \pi^* D - \epsilon E \text{ is nef} \}$$

is called the **Seshadri constant** of D at x.

It seems to be next to impossible to calculate the Seshadri constant in any interesting cases. For example there is no known example of a smooth surface S and a point $x \in S$ such that the Seshadri constant is irrational, although this is conjectured to happen nearly all the time. One of the first interesting cases is a very general smooth quintic surface S in \mathbb{P}^3 (so that S belongs to the complement of a countable union of closed subsets of the space of all quintics \mathbb{P}^{55}). Suppose that $p \in S$ is a very general point. Let $\pi : T \to S$ blow up the point p. As S is very general,

$$\text{Pic}(T) = \mathbb{Z}[\pi^* H] \oplus \mathbb{Z}[E],$$

where H is the class of a hyperplane and E is the exceptional divisor. Since p is very general, it seems reasonable to expect that the only curve of negative self-intersection on T is E. If this is the case then $\pi^* H - aE$ is nef if and only if its self-intersection is non-negative. Now

$$0 = (\pi^* H - aE)^2 = H^2 - a^2 = 5 - a^2.$$

So if there are no curves of negative self-intersection other than E, then the Seshadri constant is $\sqrt{5}$.

7