6. Ampleness criteria

We return to the problem of determining when a line bundle is ample.
Theorem 6.1 (Nakai-Moishezon). Let X be a normal projective variety and let D be a \mathbb{Q}-Cartier divisor.

TFAE
(1) D is ample.
(2) For every subvariety $V \subset X$ of dimension k,

$$
D^{k} \cdot V>0
$$

Proof. Suppose that D is ample. Then $m D$ is very ample for some $m>0$. Let $\phi: X \longrightarrow \mathbb{P}^{N}$ be the corresponding embedding. Then $m D=\phi^{*} H$, where H is a hyperplane in \mathbb{P}^{N}. Then

$$
D^{k} \cdot V=\frac{1}{m^{k}} H^{k} \cdot \phi(V)>0
$$

since intersecting $\phi(V)$ with H^{k} corresponds to intersecting V with a linear space of dimension $N-k$. But this is nothing more than the degree of $\phi(V)$ in projective space.

Now suppose that D satisfies (2). Let H be a general element of a very ample linear system. Then we have an exact sequence
$0 \longrightarrow \mathcal{O}_{X}(p D+(q-1) H) \longrightarrow \mathcal{O}_{X}(p D+q H) \longrightarrow \mathcal{O}_{H}(p D+q H) \longrightarrow 0$.
By induction, $\left.D\right|_{H}$ is ample. It is straightforward to prove that

$$
h^{i}\left(H, \mathcal{O}_{H}(p D+q H)\right)=0,
$$

for $i>0, p$ sufficiently large and any $q>0$, by induction on the dimension. In particular,

$$
h^{i}\left(X, \mathcal{O}_{X}(p D+(q-1) H)\right)=h^{i}\left(X, \mathcal{O}_{X}(p D+q H)\right),
$$

for $i>1, p$ sufficiently large and any $q \geq 1$. By Serre vanishing the last group vanishes for q sufficiently large. Thus by descending induction

$$
h^{i}\left(X, \mathcal{O}_{X}(p D+q H)\right)=0
$$

for all $q \geq 0$. Thus by (4.1) it follows that

$$
h^{0}\left(X, \mathcal{O}_{X}(m D)\right) \neq 0
$$

for m sufficiently large, that is, $|m D|$ is non-empty. As usual, this means that we may assume that $D \geq 0$ is Cartier. Let $\nu: \tilde{D} \longrightarrow D_{\text {red }}$ be the normalisation of $D_{\text {red }}$, the reduced subscheme associated to D. Then $\left.\nu^{*} D\right|_{D_{\text {red }}}$ is ample by induction. It follows by (3.4) that $\left.D\right|_{D}$ is ample.

I claim that the map

$$
\rho_{m}: H^{0}\left(X, \mathcal{O}_{X}(m D)\right) \longrightarrow H^{0}\left(D, \mathcal{O}_{D}(m D)\right)
$$

is surjective for m sufficiently large. Consider the exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}((m-1) D) \longrightarrow \mathcal{O}_{X}(m D) \longrightarrow \mathcal{O}_{D}(m D) \longrightarrow 0
$$

As $\left.D\right|_{D}$ is ample,

$$
h^{i}\left(D, \mathcal{O}_{D}(m D)\right)=0
$$

for $i>0$ and m sufficiently large, by Serre vanishing. Thus
$h^{1}\left(X, \mathcal{O}_{X}(m D)\right) \leq h^{1}\left(X, \mathcal{O}_{X}((m-1) D)\right) \quad$ and $\quad h^{i}\left(X, \mathcal{O}_{X}(m D)\right)=0$,
for $i>1$, with equality if and only if ρ_{m} is surjective. Since

$$
h^{1}\left(X, \mathcal{O}_{X}(m D)\right),
$$

is finite dimensional, its dimension cannot drop infinitely often, and so ρ_{m} is surjective as claimed.

As $\left.D\right|_{D}$ is ample, $\left.(m D)\right|_{D}$ is very ample. As we can lift sections, it follows that $|m D|$ is base point free, that is, D is semiample. Let $\phi=\phi_{m D}: X \longrightarrow \mathbb{P}^{N}$ be the corresponding morphism. Then $D=\phi^{*} H$. Suppose that C is a curve contracted by ϕ. Then

$$
D \cdot C=\phi^{*} H \cdot C=H \cdot \phi_{*} C=0
$$

a contradiction. But then $\phi_{m D}$ is a finite morphism and $D=\phi^{*} H$ is ample by (3.4).
Definition 6.2. Let X be a normal projective variety and let D be a \mathbb{Q}-Cartier divisor. We say that D is nef if $D \cdot C \geq 0$ for all curves $C \subset X$.

Lemma 6.3. Let X be a normal variety and let D be a \mathbb{Q}-Cartier divisor.

If D is semiample then D is nef.
Proof. By assumption there is a morphism $\phi: X \longrightarrow Y \subset \mathbb{P}^{n}$ such that

$$
m D=\phi^{*} H
$$

But then

$$
D \cdot C=\frac{1}{m} \phi^{*} C \cdot H \geq 0
$$

Lemma 6.4. Let X be a normal projective variety and let D be a \mathbb{Q}-Cartier divisor.

TFAE
(1) $D+H$ is ample for any ample \mathbb{Q}-divisor H.
(2) If $V \subset X$ is any subvariety of X then

$$
D^{k} \cdot V \geq 0
$$

where V has dimension k.
(3) D is nef.

Proof. (1) implies (2) and (2) implies (3) are clear. (2) implies (1) follows from Nakai-Moishezon.

Suppose that D is nef. By induction on $n=\operatorname{dim} X$ it suffices to prove that

$$
D^{n} \geq 0
$$

Pick an ample divisor H. Then $D+t H$ is nef for all $t \geq 0$. We have

$$
f(t)=(D+t H)^{n}=\sum\binom{n}{i} D^{i} H^{n-i} t^{n-i}
$$

is a polynomial in t, all of whose terms are non-negative, except maybe the constant term, which tends to infinity as t tends to infinity. Suppose that $D^{n} \leq 0$. Then there is a real number $t_{0} \in[0, \infty)$ such that

$$
f\left(t_{0}\right)=0
$$

and $f(t)>0$ for all $t>t_{0}$. Pick $t>t_{0}$ rational. Then $D+t H$ is ample, by Nakai's criteria. In particular we may find a divisor $B \in|k(D+t H)|$ for some positive integer k. We may write

$$
f(t)=t^{n} H^{n}+\sum\binom{n-1}{i} t^{i} H^{i}(H+t D)^{n-i-1} D .
$$

Consider the product $H^{i}(H+t D)^{n-i-1}$. Pick k such that $k H$ is very ample and pick l such that $l(H+t D)$ is very ample. Pick general elements $H_{1}, H_{2}, \ldots, H_{i} \in|k H|$ and $G_{1}, G_{2}, \ldots, G_{n-i-1} \in|l(H+t D)|$. Then the intersection

$$
C=H_{1} \cdot H_{2} \cdots H_{i} \cdot G_{1} \cdot G_{2} \cdots G_{n-i-1} \equiv \frac{1}{k^{i} l^{n-i-1}} H^{i} \cdot(H+t D)^{n-i-1},
$$

is a smooth curve (here \equiv denotes numerical equivalence, meaning that both sides dot with any Cartier divisor the same). Thus every term is non-negative, as $D \cdot C \geq 0$. But then

$$
0=f\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} f(t) \geq t_{0}^{n} H^{n}
$$

Thus $t_{0}=0$, and $D^{n} \geq 0$.
Lemma 6.5. Let X be a normal projective variety and let $\pi: Y \longrightarrow X$ blow up a smooth point p of X.

Then $E^{n}=(-1)^{n-1}$.

Proof. Since this result is local in the analytic topology, we may as well assume that $X=\mathbb{P}^{n}$. Choose coordinatees $x_{1}, x_{2}, \ldots, x_{n}$ about the point p. Then coordinates on $Y \subset \mathbb{A}^{n} \times \mathbb{P}^{n-1}$ are given by the equations

$$
x_{i} Y_{j}=x_{j} Y_{i} .
$$

(These equations simply express the fact that $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ defines the point $\left[Y_{1}: Y_{2}: \cdots: Y_{n}\right] \in \mathbb{P}^{n-1}$.). On the coordinate chart $Y_{n} \neq 0$, we have affine coordinates $y_{i}=Y_{i} / Y_{n}$ on \mathbb{P}^{n-1} and since

$$
x_{i}=x_{n} y_{i},
$$

it follows that $x_{n}, y_{1}, y_{2}, \ldots, y_{n-1}$ are coordinates on Y, and the exceptional divisor is given locally by $x_{n}=0$. Let H be the class of a hyperplane in \mathbb{P}^{n} which passes through p. Then we may assume that H is given by $x_{1}=0$. Since $x_{1}=x_{n} y_{1}$ it follows that

$$
\pi^{*} H=G+E,
$$

where G defined by $y_{1}=0$, is the strict transform of H. Now $\left.G\right|_{E}$ restricts to a hyperplane in E. Thus

$$
\left.E\right|_{E}=-\left.G\right|_{E}
$$

since E pushes forward to zero. But then

$$
E^{n}=\left(\left.E\right|_{E}\right)^{n-1}=(-1)^{n-1}
$$

Definition-Lemma 6.6 (Kodaira's Lemma). Let X be a normal projective variety of dimension n and let D be $a \mathbb{Q}$-Cartier divisor.

TFAE
(1) $h^{0}\left(X, \mathcal{O}_{X}(m D)\right)>\alpha m^{n}$, for some constant $\alpha>0$, for any m which is sufficiently divisible.
(2) $D \sim_{\mathbb{Q}} A+E$, where A is an ample divisor and $E \geq 0$.

If further D is nef then these conditions are equivalent to
(3) $D^{n}>0$.

If any of these conditions hold we say that D is big.
Proof. Let $H \geq 0$ be any ample Cartier divisor. If m is sufficiently large, then

$$
h^{i}\left(X, \mathcal{O}_{X}(m H)\right)=0
$$

so that by Asymptotic Riemann Roch there are positive constants α_{i} such that

$$
\alpha_{1} m^{n}<h^{0}\left(X, \mathcal{O}_{X}(m H)\right)<\alpha_{2} m^{n}
$$

for all m. Now let G be any divisor. Pick $k>0$ such that $G+k H$ is ample. Then

$$
h^{0}\left(X, \mathcal{O}_{X}(m G)\right) \leq h^{0}\left(X, \mathcal{O}_{X}(m G+m k H)\right) \leq \beta_{1} m^{n}
$$

for some constant β_{1}.
Suppose that (1) holds. Let H be an ample Cartier divisor. Then there is an exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}(m D-H) \longrightarrow \mathcal{O}_{X}(m D) \longrightarrow \mathcal{O}_{H}(m D) \longrightarrow 0 .
$$

Now

$$
h^{0}\left(H, \mathcal{O}_{H}(m D)\right) \leq \beta m^{n-1},
$$

for some constant β. It follows that

$$
h^{0}\left(X, \mathcal{O}_{X}(m D-H)\right)>\alpha m^{n} .
$$

In particular we may find B such that

$$
B \in|m D-H| .
$$

But then

$$
D \sim_{\mathbb{Q}} H / m+B / m=A+E .
$$

Thus (1) implies (2).
How suppose that (2) holds. Replacing D by a multiple, we may assume that $D \sim A+E$. But then

$$
h^{0}\left(X, \mathcal{O}_{X}(m D)\right) \geq h^{0}\left(X, \mathcal{O}_{X}(m A)\right)>\alpha m^{n}
$$

for some constant $\alpha>0$. Thus (2) implies (1).
Now suppose that D is nef. Assume that (2) holds. We may assume that A is very ample and a general element of $|A|$. Then

$$
D^{n}=A \cdot D^{n-1}+E \cdot D^{n-1} \geq\left(\left.D\right|_{A}\right)^{n-1}>0
$$

by induction on the dimension. Thus (2) implies (3).
Finally suppose that (3) holds. Let $\pi: Y \longrightarrow X$ be a birational morphism such that Y is smooth. Since $G=\pi^{*} D$ is nef, $G^{n}=D^{n}$ and

$$
h^{0}\left(Y, \mathcal{O}_{Y}(m G)\right)=h^{0}\left(X, \mathcal{O}_{X}(m D)\right)
$$

replacing X by Y and D by G, we may assume that X is smooth. Pick a very ample divisor H, a general element of $|H|$, such that $H+K_{X}$ is also very ample and let $G \in\left|H+K_{X}\right|$ be a general element. There is an exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}(m D) \longrightarrow \mathcal{O}_{X}(m D+G) \longrightarrow \mathcal{O}_{G}(m D+G) \longrightarrow 0 .
$$

Now

$$
h^{i}\left(X, \mathcal{O}_{X}(m D+G)\right)=h^{i}\left(X, \mathcal{O}_{X}\left(K_{X}+H+m D\right)\right)=0
$$

for $i>0$ and $m \geq 0$ by Kodaira vanishing, as $H+m D$ is ample. Thus

$$
\chi\left(X, \mathcal{O}_{X}(m D+G)\right)>\alpha m^{n}
$$

for some constant $\alpha>0$. Since

$$
h^{0}\left(G, \mathcal{O}_{G}(m D+G)\right)<\beta m^{n-1}
$$

for some constant β, (3) implies (1).
Theorem 6.7 (Seshadri's criteria). Let X be a normal projective variety and let D be a \mathbb{Q}-divisor.

TFAE
(1) D is ample.
(2) For every point $x \in X$, there is a positive constant $\epsilon=\epsilon(x)>0$ such that for every curve C,

$$
D \cdot C>\epsilon \operatorname{mult}_{x} C,
$$

where mult $_{x} C$ is the multiplicity of the point x on C.
Proof. Suppose that D is ample. Then $m D$ is very ample for some positive integer m. Let C be a curve with a point x of multiplicity k. Pick y any other point of C. Then we may find $H \in|m D|$ containing x and not containing y. In this case

$$
(m D) \cdot C=H \cdot C \geq k
$$

so that $\epsilon=1 / m$ will do. Thus (1) implies (2).
Now assume that (2) holds. We check the hypotheses for Nakai's criteria. By induction on the dimension n of X it suffices to check that $D^{n}>0$. Let $\pi: Y \longrightarrow X$ be the blow up of X at x, a smooth point of X, with exceptional divisor E. Consider $\pi^{*} D-\eta E$, for any $0<\eta<\epsilon$. Let $\Sigma \subset Y$ be any curve on Y. If Σ is contained in E, then

$$
\left(\pi^{*} D-\eta E\right) \cdot \Sigma=-E \cdot \Sigma>0
$$

Otherwise let C be the image of Σ. If the multiplicity of C at x is m, then $E \cdot \Sigma=m$. Thus

$$
\left(\pi^{*} D-\eta E\right) \cdot \Sigma=D \cdot C-\eta m>0
$$

by definition of ϵ. It follows that $\pi^{*} D-\eta E$ is nef and so $\pi^{*} D-\epsilon E$ is nef. By (6.4) it follows that the polynomial

$$
f(t)=\left(\pi^{*} D-t E\right)^{n}
$$

of degree n in t is non-negative. On the other hand, note that $E^{n}=$ $\pm 1 \neq 0$. Thus the polynomial $f(t)$ is not constant. Thus $f(\eta)>0$, some $0<\eta<\epsilon$. It follows that

$$
h^{0}\left(X, \mathcal{O}_{X}(m D)\right) \geq h^{0}\left(Y, \mathcal{O}_{X}\left(m \pi^{*} D-m \eta E\right)\right)>0
$$

for m sufficiently large and divisible. It follows easily that $D^{n}>0$.

One of the most interesting aspects of Seshadri's criteria is that gives a local measure of ampleness:

Definition 6.8. Let X be a normal variety, and let D be a nef \mathbb{Q} Cartier divisor. Given a point $x \in X$, let $\pi: Y \longrightarrow X$ be the blow up of X at x. The real number

$$
\epsilon(D, x)=\inf \left\{\epsilon \mid \pi^{*} D-\epsilon E \text { is nef }\right\}
$$

is called the Seshadri constant of D at x.
It seems to be next to impossible to calculate the Seshadri contant in any interesting cases. For example there is no known example of a smooth surface S and a point $x \in S$ such that the Seshadri constant is irrational, although this is conjectured to happen nearly all the time. One of the first interesting cases is a very general smooth quintic surface S in \mathbb{P}^{3} (so that S belongs to the complement of a countable union of closed subsets of the space of all quintics $\left.\mathbb{P}^{55}\right)$. Suppose that $p \in S$ is a very general point. Let $\pi: T \longrightarrow S$ blow up the point p. As S is very general,

$$
\operatorname{Pic}(T)=\mathbb{Z}\left[\pi^{*} H\right] \oplus \mathbb{Z}[E]
$$

where H is the class of a hyperplane and E is the exceptional divisor. Since p is very general, it seems reasonable to expect that the only curve of negative self-intersection on T is E. If this is the case then $\pi^{*} H-a E$ is nef if and only if its self-intersection is non-negative. Now

$$
0=\left(\pi^{*} H-a E\right)^{2}=H^{2}-a^{2}=5-a^{2}
$$

So if there are no curves of negative self-intersection other than E, then the Seshadri constant is $\sqrt{5}$.

