MODEL ANSWERS TO THE THIRD HOMEWORK

1. See question 3 , hwk $\# 2$.
2. (i) Pick $x \in X$. Then we may find $D^{\prime} \in|D|$ and $H^{\prime} \in|H|$ such that $x \notin D^{\prime}$ and $x \notin H^{\prime}$. But then $x \notin D^{\prime}+H^{\prime} \in|D+H|$. Thus $|D+H|$ is base point free.
Now suppose that x and $y \in X, x \neq y$. Pick $D^{\prime} \in|D|$ and $H^{\prime} \in|H|$ such that $y \notin D^{\prime}$ and whilst $x \in H^{\prime}$ but $y \notin H^{\prime}$. Then $x \in D^{\prime}+H^{\prime} \in$ $|D+H|$ whilst $y \notin D^{\prime}+H^{\prime}$, so that $\phi=\phi_{|D+H|}$ separates points.
Finally let z be an irreducible length two scheme, with support x. Pick $D^{\prime} \in|D|$ and $H^{\prime} \in|H|$ such that $x \notin D^{\prime}$ and $x \in H^{\prime}$ whilst $z \not \subset H$. Then $x \in D^{\prime}+H^{\prime} \in|D+H|$ whilst $z \not \subset D^{\prime}+H^{\prime}$. Thus ϕ separates tangent vectors.
Since ϕ separates points and tangent vectors, it follows that ϕ is an embedding.
(ii) Immediate from (i).
(iii) $\mathrm{By}(3.3 .3)$ there is an integer m_{0} such that $D+m_{0} H$ is semiample. But then

$$
D+m H=D+m_{0} H+\left(m-m_{0}\right) H,
$$

is ample for all $m>m_{0}$.
3. Let F be the codimension one support of the base locus of $|D|$, and let $M=D-F$. Then

$$
|D|=|M|+F,
$$

and the base locus of $|M|$ has codimension two or more. It is clear that $\phi_{|M|}=\phi_{|D|}$, so that if $|M|$ is free, $\phi_{|D|}$ extends to a morphism.
Now suppose that C is a curve. The map ϕ is given by some linear system. The mobile part is free, since C is a curve, and so ϕ extends to a morphism.
4. First a general observation. Elements of the linear system

$$
\left|a \pi^{*} H-\sum_{i=1}^{d-1} m_{i} E_{i}\right|,
$$

correspond to elements of the linear system

$$
|a H|_{Y} \mid,
$$

which have multiplicity m_{i} at p_{i}. But the map

$$
|a H| \underset{1}{\longrightarrow}|a H|_{Y} \mid
$$

is surjective, since the obsruction to surjectivity is

$$
H^{1}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(a-d)\right)=0 .
$$

Putting all of this together, elements of the linear system

$$
\left|a \pi^{*} H-\sum_{i=1}^{d-1} m_{i} E_{i}\right|,
$$

correspond to elements of the linear system

$$
|a H|,
$$

which when restricted to Y have multiplicity m_{i} at p_{i}. (iii) A hyperplane $H \subset \mathbb{P}^{n+1}$ that contains $p_{1}, p_{2}, \ldots, p_{d-1}$ must contain the line l. It follows that that the base locus of $|m L|$ is p_{d}.
(i) clear from (iii).
(ii) Let \tilde{m} be the strict transform of the line. Then

$$
D \cdot \tilde{m}=H \cdot m-1=0 .
$$

Thus D is not ample.
(iv) Now

$$
K_{Y}=\left.\left(K_{\mathbb{P}^{n+1}}+Y\right)\right|_{Y}=\left.(d-n-2) H\right|_{Y} .
$$

Thus

$$
K_{X}=\pi^{*} K_{Y}+(n-1) \sum_{i=1}^{d-1} E_{i}=\left.(d-n-2) \pi^{*} H\right|_{Y}+(n-1) \sum_{i=1}^{d-1} E_{i} .
$$

It follows that

$$
K_{X}+n D=\left.(d-2) \pi^{*} H\right|_{Y}-\sum_{i=1}^{d-1} E_{i} .
$$

Consider hypersurfaces $W \subset \mathbb{P}^{n+1}$ of degree $d-2$ containing the $d-1$ points $p_{1}, p_{2}, \ldots, p_{d-1}$. If W does not contain l, then

$$
W \cdot l \geq d-1
$$

a contradiction. Thus any hypersurface of degree $d-1$ containing the points $p_{1}, p_{2}, \ldots, p_{d-1}$ must contain the line l. In particular it must contain the point p_{d}. Thus p_{d} is in the base locus of the linear system

$$
\left|K_{X}+n D\right| .
$$

5. It is proved in (3.8) that the second term is correct when X is a curve. Following the proof of (3.8), if we pick a very ample divisor
H such that $|D+H|$ is also very ample and we pick $H \in|H|$ and $G \in|D+H|$ general then by induction we have

$$
\begin{aligned}
\Delta P(m-1) & =\chi\left(G, \mathcal{O}_{G}(m D+E+H)\right)-\chi\left(H, \mathcal{O}_{H}(m D+E+H)\right) \\
& =\frac{D^{n} m^{n-1}}{(n-1)!}+\frac{D^{n-2} \cdot\left(G \cdot\left(K_{X}+G-2(E+H)\right)-H \cdot\left(K_{X}+H-2(E+H)\right)\right) m^{n-4}}{2(n-2)!} \\
& =\frac{D^{n} m^{n-1}}{(n-1)!}+\frac{D^{n} m^{n-2}}{2(n-2)!}+\frac{D^{n-1} \cdot\left(K_{X}-2 E\right) m^{n-2}}{2(n-2)!}+\ldots,
\end{aligned}
$$

so that

$$
P(m)=\frac{D^{n} m^{n}}{n!}+\frac{D^{n-1} \cdot\left(K_{X}-2 E\right) m^{n-1}}{2(n-1)!}+\ldots
$$

as required.

