## MODEL ANSWERS TO THE FOURTH HOMEWORK

1. (i) Here is a pretty sneaky way to solve this problem. First note that this problem is étale local about any pair of points $p$ and $q$. But any smooth curve is étale locally equivalent to $\mathbb{P}^{1}$. So we may assume that $C=\mathbb{P}^{1}$. In this case divisors of degree two can be identified with polynomials of degree two, modulo constants, that is $\mathbb{P}^{2}$, which is smooth.
Alternatively, working locally, we may assume that $C=\operatorname{Spec} \mathbb{C}[t]$ is affine. On $C \times C$ we have coordinates $x$ and $y$, so that $C \times C=$ $\operatorname{Spec} \mathbb{C}[x, y]$. Then $C_{2}=\operatorname{Spec} \mathbb{C}[x, y]^{\mathbb{Z}_{2}}$. Now the action of $\mathbb{Z}_{2}$ is the standard one, given by swapping $x$ and $y$. The ring of invariants is

$$
\mathbb{C}[x, y]^{\mathbb{Z}_{2}}=\mathbb{C}[x+y, x y]=\mathbb{C}[u, v],
$$

by a classical result, whose proof goes back to Newton. But then $C_{2}$ is smooth.
(ii) Clear.
(iii) Consider the linear system $\left|K_{C}\right| \subset C_{2}$. The Abel-Jacobi map collapses this to a point, since by definition the fibres of the AbelJacobi map are linear systems. By Riemann-Roch, $\left|K_{C}\right|$ is a $g_{2}^{1}$ and so defines a copy of $\mathbb{P}^{1} \subset C_{2}$.
(iv) $\overline{\mathrm{NE}}\left(C_{2}\right) \subset \mathbb{R}^{2}$. Thus there are two rays, of which one is given by the $g_{2}^{1}$. The first thing to do is compute the intersection pairing between the basis elements $x$ and $\delta$. We will use push-pull, which we may state in the form

$$
\alpha \cdot f^{*} \beta=f_{*}\left(\alpha \cdot f^{*} \beta\right)=f_{*} \alpha \cdot \beta,
$$

where $f: X \longrightarrow Y$ is a finite morphism of degree $d, \alpha$ is a cycle of dimension $k$ on $X$ and $\beta$ is a cycle of dimension $n-k$ on $Y$.
We apply this to the natural map $f: C \times C \longrightarrow C_{2}$ of degree 2 . First note that $f^{*} \delta=\Delta \subset C \times C$, where $\Delta$ is the diagonal. Now $\Delta \simeq C$, and

$$
2=K_{C}=\left(K_{S}+\Delta\right) \cdot \Delta=2 K_{C}+\Delta \cdot \Delta=4+\Delta^{2} .
$$

Thus $\Delta^{2}=-2$. But then

$$
\delta^{2}=f^{*} \delta \cdot \Delta=2 \Delta^{2}=-4
$$

In particular $\delta$ generates the other extremal ray. Now note that

$$
f^{*} x=X=X_{1}+X_{2}=[\{p\} \times C]+[C \times\{p\}],
$$

where $p \in C$ is any point.

$$
x^{2}=f^{*} x \cdot X_{1}=1
$$

Finally,

$$
x \cdot \delta=X_{1} \cdot f^{*} \delta=2 X_{1} \cdot \Delta=2
$$

We want to calculate the class $\gamma=a x+b \delta$ of the $g_{2}^{1}$. We have

$$
1=\gamma \cdot x=(a x+b \delta) \cdot x=a+2 b
$$

How about $\gamma \cdot \delta$ ? This counts the number $r$ of ramification points of the $g_{2}^{1}$. By Riemann-Hurwitz,

$$
2=2 g-2=-2 \cdot 2+r=r,
$$

so that $r=6$. Thus

$$
6=\gamma \cdot \delta=(a x+b \delta) \cdot \delta=2 a-4 b .
$$

Thus $a=2, b=-1 / 2$ and $\gamma=2 x-\delta / 2$. To check this calculation, note that as $\gamma$ represents a copy of $\mathbb{P}^{1}$ contracted to a smooth point, in fact

$$
-1=\gamma^{2}=(2 x-\delta / 2)^{2}=4 x^{2}-2 x \cdot \delta-\delta^{2} / 4=4-4-4 / 4=-1
$$

Thus $\overline{\mathrm{NE}}\left(C_{2}\right)$ is the two dimensional cone spanned by $\delta$ and $4 x-\delta$. (v) It is classical that the image of $x$ represents the class $\theta$ of the $\Theta$ divisor. The $\Theta$ divisor is ample. $\pi^{*} \theta=x+c \gamma$, where $c$ is determined by the constraint that

$$
0=\pi^{*} \theta \cdot \gamma=(x+c \gamma) \cdot \gamma=1-c
$$

Thus $c=1$. The Seshadri constant is the largest $d$ such that

$$
\pi^{*} \theta-d \gamma
$$

is nef. Since this dots $\gamma$ positively, we want to find $d$ such that

$$
\left(\pi^{*} \theta-d \gamma\right) \cdot \delta=0
$$

that is

$$
2-6(d-1)=(x-(d-1) \gamma) \cdot \delta=0
$$

Thus $d=4 / 3$.

