
MODEL ANSWERS TO THE FIFTH HOMEWORK

1. We proved in class that if one blows up a point the log discrepancy
is at least two.
Now let ν be an arbitrary valuation. Pick a birational morphism
π : T −→ S, a composition of smooth blow ups, which realises the
centre of ν as one of the exceptional divisors. Suppose that π is the
composition of k blow ups, and that E1, E2, . . . , Ek are the exceptional
divisors, in the order in which they appear. We may assume that one
cannot realise the centre of ν as a divisor with fewer than k blow ups.
In this case the centre of ν is Ek and we may assume that k > 1.
Let f : S1 −→ S be the first blow up, and let π1 : T −→ S1 be the
induced birational morphism. Then π1 is a composition of k − 1 blow
ups. By induction, we have

KT +
k∑

i=2

Ei = π∗
1KS1 +

∑
biEi,

where bi ≥ 2 with equality iff i = 2. On the other hand

KS1 + F = f ∗KS + 2F,

where F is the exceptional divisor of the blow up f , so that the strict
transform of F on T is E1. Thus

E1 +
k∑

i=2

ciEi = π∗
1F,

where ci are positive integers. It follows that

KT +
k∑

i=1

Ei = KT + E1 +
k∑

i=2

Ei

= π∗
1(KS1 − F ) +

∑
(bi + ci)Ei.

2. Pick m such that m(KX + ∆) is Cartier. Then the log discrepancy
takes values in the discrete set Z〈1/m〉 and the result is clear.
It is also interesting to see what happens when KX+∆ is not Q-Cartier.
Suppose that there is a valuation of irrational log discrepancy less than
zero. I claim that the set of log discrepancies is then dense in the real
numbers. As in the lectures, we may assume that X = S is a smooth
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surface and ∆ = (1 + ε)C, where C is a smooth curve, and ε > 0 is
irrational.
Blowing up along the repeated intersection of the exceptional divisor
and the strict transform of C, we can create a component of coefficient
nε, as in the lectures. In other words, we may assume that the coef-
ficient of C is nε, for any n > 0. Now consider blowing up along the
exceptional divisor, but away from C. After one blow up the coefficient
is nε− 1. After m such blow ups the coefficient is nε−m. But the set

{nε−m | (n,m) ∈ N2 },
is dense in R, for any positive irrational number ε.
3. (i) As C2 is the union of the two axes, the log canonical threshold
is one.
(ii) We have to write down a log resolution. Let π : Y −→ X first blow
up the singular point, then the intersection of the strict transform of C
with the exceptional divisor and finally blow up the triple intersection
of the strict transform of C, the strict transform of the old exceptional
divisor and the new exceptional divisor. Label the exceptional divisor
E1, E2 and E3, in the order they appear. Then C has multiplicity 2,
3 and 6 along E1, E2 and E3 respectively. On the other hand, the log
discrepancy of E1 is 2, or E2 is 3 and of E3 is 5. Thus

KY +λD+E1+E2+E3 = π∗(KX+λC)+(2−2λ)E1+(3−3λ)E2+(6−5λ)E3.

So the largest value of λ, such that the log discrepancies 2(1 − λ),
3(1 − λ) and (6 − 5λ) are all non-negative is 5/6. The log canonical
threshold is 5/6.
(iii) In this case a log resolution is given by blowing up twice. The
multiplicity of C along E1 and E2 is 2 and 4 and the log discrepancy
is 2 and 3. Thus

KY + λD + E1 + E2 = π∗(KX + λC) + (2− 2λ)E1 + (3− 4λ)E2.

The log canonical threshold is therefore 3/4.
(iv) The log canonical threshold is 1/m+ 1/n. The easiest way to see
this is to use weighted blowups (or toric geometry). In terms of toric
geometry, suppose that we make the weighted blow up corresponding to
inserting a vector of type (m,n). Suppose that the exceptional divisor
is E. Then

KY + λD + E = π∗(KX + λC) + aE,

where a is a function of λ. Now E is a copy of P1, but the twist is
that Y is singular along E (in other words, the trick is to go to a log
resolution, focus on the component which computes the log canonical
threshold, and contract all the other components; the resulting surface
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Y is then singular along E). Now there are then two singular points
along E, and again by general theory, these singular points are cyclic
quotient singularities of index m and n. This implies that

(KY + E)|E = KE +
∑ m− 1

m
p+

n− 1

n
q,

where p and q are the points of E corresponding to the two cyclic
quotient singularities. On the other hand, D intersects E transversally
in one point. Now at the log canonical threshold, a = 0 (indeed,
KY + E + λD is log canonical). Thus

0 = (KY + E + λD) · E = −2 +
m− 1

m
+
n− 1

n
+ λ.

Thus

λ =
1

m
+

1

n
,

as conjectured.
4. Let π : S −→ Z contract a real KS-extremal ray. As in the classical
case, there are three cases, given by the dimension of Z.
Suppose that Z is a point. Then S is either a copy of P2, defined over
the reals, or a copy of P1 × P1, on which complex conjugation acts by
switching the two fibrations.
Suppose that Z is a curve. Then Z is a curve over the reals. If p is a
point of Z which is not equal to its complex conjugate, then the fibre
over p is a copy of P1, with no real points. Otherwise if p is a real
point, then there are two possibilities for the fibre. In the first, the
fibre is a curve of genus zero over the reals (there are two such, those
with real points P1

R, and those with none, x2 + y2 + z2 = 0 ⊂ P2). In
the second the fibre is a union of two P1’s, joined at a real point, and
complex conjugations switches the two copies. There is no limit to the
number of these reducible fibres.
Finally suppose that Z is a surface. In this case, the exceptional locus
is either irreducible, a curve of genus zero over the reals, or reducible,
two complex conjugate −1-curves.


